Наукова електронна бібліотека
періодичних видань НАН України

Equivalent and Alternative Forms for BF Gravity with Immirzi Parameter

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Montesinos, M.
dc.contributor.author Velázquez, M.
dc.date.accessioned 2019-02-15T17:03:51Z
dc.date.available 2019-02-15T17:03:51Z
dc.date.issued 2011
dc.identifier.citation Equivalent and Alternative Forms for BF Gravity with Immirzi Parameter / M. Montesinos, M. Velázquez // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 26 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 83C05; 83C45
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/147658
dc.description.abstract A detailed analysis of the BF formulation for general relativity given by Capovilla, Montesinos, Prieto, and Rojas is performed. The action principle of this formulation is written in an equivalent form by doing a transformation of the fields of which the action depends functionally on. The transformed action principle involves two BF terms and the two Lorentz invariants that appear in the original action principle generically. As an application of this formalism, the action principle used by Engle, Pereira, and Rovelli in their spin foam model for gravity is recovered and the coupling of the cosmological constant in such a formulation is obtained. uk_UA
dc.description.sponsorship This paper is a contribution to the Special Issue “Loop Quantum Gravity and Cosmology”. The full collection is available at http://www.emis.de/journals/SIGMA/LQGC.html. This work was partially supported by Conacyt, grant number 56159-F. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Equivalent and Alternative Forms for BF Gravity with Immirzi Parameter uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис