Показати простий запис статті
dc.contributor.author |
Street, R. |
|
dc.date.accessioned |
2019-02-14T18:10:08Z |
|
dc.date.available |
2019-02-14T18:10:08Z |
|
dc.date.issued |
2016 |
|
dc.identifier.citation |
Weighted Tensor Products of Joyal Species, Graphs, and Charades / R. Street // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 23 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
DOI:10.3842/SIGMA.2016.005 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 18D10; 05A15; 18A32; 18D05; 20H30; 16T30 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/147417 |
|
dc.description.abstract |
Motivated by the weighted Hurwitz product on sequences in an algebra, we produce a family of monoidal structures on the category of Joyal species. We suggest a family of tensor products for charades. We begin by seeing weighted derivational algebras and weighted Rota-Baxter algebras as special monoids and special semigroups, respectively, for the same monoidal structure on the category of graphs in a monoidal additive category. Weighted derivations are lifted to the categorical level. |
uk_UA |
dc.description.sponsorship |
I am grateful to the referees for their careful work and, in particular, for pointing out the
references [1, 3, 20]. The author gratefully acknowledges the support of Australian Research
Council Discovery Grant DP130101969. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Weighted Tensor Products of Joyal Species, Graphs, and Charades |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті