Показати простий запис статті

dc.contributor.author Street, R.
dc.date.accessioned 2019-02-14T18:10:08Z
dc.date.available 2019-02-14T18:10:08Z
dc.date.issued 2016
dc.identifier.citation Weighted Tensor Products of Joyal Species, Graphs, and Charades / R. Street // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 23 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other DOI:10.3842/SIGMA.2016.005
dc.identifier.other 2010 Mathematics Subject Classification: 18D10; 05A15; 18A32; 18D05; 20H30; 16T30
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/147417
dc.description.abstract Motivated by the weighted Hurwitz product on sequences in an algebra, we produce a family of monoidal structures on the category of Joyal species. We suggest a family of tensor products for charades. We begin by seeing weighted derivational algebras and weighted Rota-Baxter algebras as special monoids and special semigroups, respectively, for the same monoidal structure on the category of graphs in a monoidal additive category. Weighted derivations are lifted to the categorical level. uk_UA
dc.description.sponsorship I am grateful to the referees for their careful work and, in particular, for pointing out the references [1, 3, 20]. The author gratefully acknowledges the support of Australian Research Council Discovery Grant DP130101969. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Weighted Tensor Products of Joyal Species, Graphs, and Charades uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис