Показати простий запис статті
dc.contributor.author |
Schillewaert, J. |
|
dc.contributor.author |
Thas, K. |
|
dc.date.accessioned |
2019-02-14T17:51:03Z |
|
dc.date.available |
2019-02-14T17:51:03Z |
|
dc.date.issued |
2011 |
|
dc.identifier.citation |
The 2-Transitive Transplantable Isospectral Drums / J. Schillewaert, K. Thas // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 19 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 20D06; 35J10; 35P05; 37J10; 58J53 |
|
dc.identifier.other |
DOI: http://dx.doi.org/10.3842/SIGMA.2011.080 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/147407 |
|
dc.description.abstract |
For Riemannian manifolds there are several examples which are isospectral but not isometric, see e.g. J. Milnor [Proc. Nat. Acad. Sci. USA 51 (1964), 542]; in the present paper, we investigate pairs of domains in R² which are isospectral but not congruent. All known such counter examples to M. Kac's famous question can be constructed by a certain tiling method (''transplantability'') using special linear operator groups which act 2-transitively on certain associated modules. In this paper we prove that if any operator group acts 2-transitively on the associated module, no new counter examples can occur. In fact, the main result is a corollary of a result on Schreier coset graphs of 2-transitive groups. |
uk_UA |
dc.description.sponsorship |
The second author is partially supported by the Fund for Scientific Research – Flanders (Belgium). |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
The 2-Transitive Transplantable Isospectral Drums |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті