Показати простий запис статті

dc.contributor.author Schillewaert, J.
dc.contributor.author Thas, K.
dc.date.accessioned 2019-02-14T17:51:03Z
dc.date.available 2019-02-14T17:51:03Z
dc.date.issued 2011
dc.identifier.citation The 2-Transitive Transplantable Isospectral Drums / J. Schillewaert, K. Thas // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 19 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 20D06; 35J10; 35P05; 37J10; 58J53
dc.identifier.other DOI: http://dx.doi.org/10.3842/SIGMA.2011.080
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/147407
dc.description.abstract For Riemannian manifolds there are several examples which are isospectral but not isometric, see e.g. J. Milnor [Proc. Nat. Acad. Sci. USA 51 (1964), 542]; in the present paper, we investigate pairs of domains in R² which are isospectral but not congruent. All known such counter examples to M. Kac's famous question can be constructed by a certain tiling method (''transplantability'') using special linear operator groups which act 2-transitively on certain associated modules. In this paper we prove that if any operator group acts 2-transitively on the associated module, no new counter examples can occur. In fact, the main result is a corollary of a result on Schreier coset graphs of 2-transitive groups. uk_UA
dc.description.sponsorship The second author is partially supported by the Fund for Scientific Research – Flanders (Belgium). uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title The 2-Transitive Transplantable Isospectral Drums uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис