Показати простий запис статті

dc.contributor.author Ghressi, A.
dc.contributor.author Khériji, L.
dc.contributor.author Tounsi, M.I.
dc.date.accessioned 2019-02-14T17:36:55Z
dc.date.available 2019-02-14T17:36:55Z
dc.date.issued 2011
dc.identifier.citation An Introduction to the q-Laguerre-Hahn Orthogonal q-Polynomials / A. Ghressi, L. Khériji, M.I. Tounsi // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 21 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 42C05; 33C45
dc.identifier.other DOI: http://dx.doi.org/10.3842/SIGMA.2011.092
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/147401
dc.description.abstract Orthogonal q-polynomials associated with q-Laguerre-Hahn form will be studied as a generalization of the q-semiclassical forms via a suitable q-difference equation. The concept of class and a criterion to determinate it will be given. The q-Riccati equation satisfied by the corresponding formal Stieltjes series is obtained. Also, the structure relation is established. Some illustrative examples are highlighted. uk_UA
dc.description.sponsorship This paper is a contribution to the Proceedings of the Conference “Symmetries and Integrability of Difference Equations (SIDE-9)” (June 14–18, 2010, Varna, Bulgaria). The full collection is available at http://www.emis.de/journals/SIGMA/SIDE-9.html. The authors are very grateful to the referees for the constructive and valuable comments and recommendations and for making us pay attention to a certain references. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title An Introduction to the q-Laguerre-Hahn Orthogonal q-Polynomials uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис