Показати простий запис статті
dc.contributor.author |
Ghressi, A. |
|
dc.contributor.author |
Khériji, L. |
|
dc.contributor.author |
Tounsi, M.I. |
|
dc.date.accessioned |
2019-02-14T17:36:55Z |
|
dc.date.available |
2019-02-14T17:36:55Z |
|
dc.date.issued |
2011 |
|
dc.identifier.citation |
An Introduction to the q-Laguerre-Hahn Orthogonal q-Polynomials / A. Ghressi, L. Khériji, M.I. Tounsi // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 21 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 42C05; 33C45 |
|
dc.identifier.other |
DOI: http://dx.doi.org/10.3842/SIGMA.2011.092 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/147401 |
|
dc.description.abstract |
Orthogonal q-polynomials associated with q-Laguerre-Hahn form will be studied as a generalization of the q-semiclassical forms via a suitable q-difference equation. The concept of class and a criterion to determinate it will be given. The q-Riccati equation satisfied by the corresponding formal Stieltjes series is obtained. Also, the structure relation is established. Some illustrative examples are highlighted. |
uk_UA |
dc.description.sponsorship |
This paper is a contribution to the Proceedings of the Conference “Symmetries and Integrability of Difference Equations (SIDE-9)” (June 14–18, 2010, Varna, Bulgaria). The full collection is available at http://www.emis.de/journals/SIGMA/SIDE-9.html.
The authors are very grateful to the referees for the constructive and valuable comments and
recommendations and for making us pay attention to a certain references. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
An Introduction to the q-Laguerre-Hahn Orthogonal q-Polynomials |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті