Показати простий запис статті
dc.contributor.author |
Torre, A. |
|
dc.date.accessioned |
2019-02-14T17:26:31Z |
|
dc.date.available |
2019-02-14T17:26:31Z |
|
dc.date.issued |
2011 |
|
dc.identifier.citation |
Appell Transformation and Canonical Transforms / A Torre // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 78 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 35K05; 35K10; 47D06 |
|
dc.identifier.other |
DOI:10.3842/SIGMA.2011.072 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/147395 |
|
dc.description.abstract |
The interpretation of the optical Appell transformation, as previously elaborated in relation to the free-space paraxial propagation under both a rectangular and a circular cylindrical symmetry, is reviewed. Then, the caloric Appell transformation, well known in the theory of heat equation, is shown to be amenable for a similar interpretation involving the Laplace transform rather than the Fourier transform, when dealing with the 1D heat equation. Accordingly, when considering the radial heat equation, suitably defined Hankel-type transforms come to be involved in the inherent Appell transformation. The analysis is aimed at outlining the link between the Appell transformation and the canonical transforms. |
uk_UA |
dc.description.sponsorship |
This paper is a contribution to the Special Issue “Symmetry, Separation, Super-integrability and Special Functions (S⁴)”. The full collection is available at http://www.emis.de/journals/SIGMA/S4.html.
The author wishes to thank an anonymous referee, who with his/her suggestions, comments and criticisms has greatly improved the paper. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Appell Transformation and Canonical Transforms |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті