Показати простий запис статті
dc.contributor.author |
Turbiner, A.V. |
|
dc.date.accessioned |
2019-02-14T17:25:44Z |
|
dc.date.available |
2019-02-14T17:25:44Z |
|
dc.date.issued |
2011 |
|
dc.identifier.citation |
From Quantum AN (Calogero) to H₄ (Rational) Model / A.V. Turbiner // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 16 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 35P99; 47A15; 47A67; 47A75 |
|
dc.identifier.other |
DOI:10.3842/SIGMA.2011.071 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/147394 |
|
dc.description.abstract |
A brief and incomplete review of known integrable and (quasi)-exactly-solvable quantum models with rational (meromorphic in Cartesian coordinates) potentials is given. All of them are characterized by (i) a discrete symmetry of the Hamiltonian, (ii) a number of polynomial eigenfunctions, (iii) a factorization property for eigenfunctions, and admit (iv) the separation of the radial coordinate and, hence, the existence of the 2nd order integral, (v) an algebraic form in invariants of a discrete symmetry group (in space of orbits). |
uk_UA |
dc.description.sponsorship |
This paper is a contribution to the Special Issue “Symmetry, Separation, Super-integrability and Special Functions (S₄)”. The full collection is available at http://www.emis.de/journals/SIGMA/S4.html. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
From Quantum AN (Calogero) to H₄ (Rational) Model |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті