Показати простий запис статті

dc.contributor.author Turbiner, A.V.
dc.date.accessioned 2019-02-14T17:25:44Z
dc.date.available 2019-02-14T17:25:44Z
dc.date.issued 2011
dc.identifier.citation From Quantum AN (Calogero) to H₄ (Rational) Model / A.V. Turbiner // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 16 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 35P99; 47A15; 47A67; 47A75
dc.identifier.other DOI:10.3842/SIGMA.2011.071
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/147394
dc.description.abstract A brief and incomplete review of known integrable and (quasi)-exactly-solvable quantum models with rational (meromorphic in Cartesian coordinates) potentials is given. All of them are characterized by (i) a discrete symmetry of the Hamiltonian, (ii) a number of polynomial eigenfunctions, (iii) a factorization property for eigenfunctions, and admit (iv) the separation of the radial coordinate and, hence, the existence of the 2nd order integral, (v) an algebraic form in invariants of a discrete symmetry group (in space of orbits). uk_UA
dc.description.sponsorship This paper is a contribution to the Special Issue “Symmetry, Separation, Super-integrability and Special Functions (S₄)”. The full collection is available at http://www.emis.de/journals/SIGMA/S4.html. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title From Quantum AN (Calogero) to H₄ (Rational) Model uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис