Наукова електронна бібліотека
періодичних видань НАН України

Spherical Fourier Transforms on Locally Compact Quantum Gelfand Pairs

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Caspers, M.
dc.date.accessioned 2019-02-14T16:55:15Z
dc.date.available 2019-02-14T16:55:15Z
dc.date.issued 2011
dc.identifier.citation Spherical Fourier Transforms on Locally Compact Quantum Gelfand Pairs / M. Caspers // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 44 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 16T99; 43A90
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/147385
dc.description.abstract We study Gelfand pairs for locally compact quantum groups. We give an operator algebraic interpretation and show that the quantum Plancherel transformation restricts to a spherical Plancherel transformation. As an example, we turn the quantum group analogue of the normaliser of SU(1,1) in SL(2,C) together with its diagonal subgroup into a pair for which every irreducible corepresentation admits at most two vectors that are invariant with respect to the quantum subgroup. Using a Z₂-grading, we obtain product formulae for little q-Jacobi functions. uk_UA
dc.description.sponsorship This paper is a contribution to the Special Issue “Relationship of Orthogonal Polynomials and Special Functions with Quantum Groups and Integrable Systems”. The full collection is available at http://www.emis.de/journals/SIGMA/OPSF.html. The author likes to thank Erik Koelink for the useful discussions and Noud Aldenhoven for providing Fig. 1. Also, the author benefits from a detailed referee report. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Spherical Fourier Transforms on Locally Compact Quantum Gelfand Pairs uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис