Показати простий запис статті

dc.contributor.author Chekhov, L.O.
dc.date.accessioned 2019-02-14T14:45:23Z
dc.date.available 2019-02-14T14:45:23Z
dc.date.issued 2007
dc.identifier.citation Teichmüller Theory of Bordered Surfaces / L.O. Chekhov // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 23 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2000 Mathematics Subject Classification: 37D40; 53C22
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/147366
dc.description.abstract We propose the graph description of Teichmüller theory of surfaces with marked points on boundary components (bordered surfaces). Introducing new parameters, we formulate this theory in terms of hyperbolic geometry. We can then describe both classical and quantum theories having the proper number of Thurston variables (foliation-shear coordinates), mapping-class group invariance (both classical and quantum), Poisson and quantum algebra of geodesic functions, and classical and quantum braid-group relations. These new algebras can be defined on the double of the corresponding graph related (in a novel way) to a double of the Riemann surface (which is a Riemann surface with holes, not a smooth Riemann surface). We enlarge the mapping class group allowing transformations relating different Teichmüller spaces of bordered surfaces of the same genus, same number of boundary components, and same total number of marked points but with arbitrary distributions of marked points among the boundary components. We describe the classical and quantum algebras and braid group relations for particular sets of geodesic functions corresponding to An and Dn algebras and discuss briefly the relation to the Thurston theory. uk_UA
dc.description.sponsorship This paper is a contribution to the Vadim Kuznetsov Memorial Issue ‘Integrable Systems and Related Topics’. The author is indebted to V.V. Fock and R.C. Penner for the fruitful discussion on the Oberwolfach Conference on Teichm¨uller spaces, which initiated this work. This work has been partially financially supported by the RFBR Grant No. 05-01-00498, by the Grant for Support of the Leading Scientific Schools 2052.2003.1, by the Program Mathematical Methods of Nonlinear Dynamics, by the ANS Grant “G´eom´etrie et Int´egrabilit´e en Physique Math´ematique” (contract number ANR-05-BLAN-0029-01), and by the European Community through the FP6 Marie Curie RTN ENIGMA (Contract number MRTN-CT-2004-5652). uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Teichmüller Theory of Bordered Surfaces uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис