Показати простий запис статті
dc.contributor.author |
Sergyeyev, A. |
|
dc.date.accessioned |
2019-02-14T14:43:38Z |
|
dc.date.available |
2019-02-14T14:43:38Z |
|
dc.date.issued |
2007 |
|
dc.identifier.citation |
Weakly Nonlocal Hamiltonian Structures: Lie Derivative and Compatibility / A. Sergyeyev // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 32 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2000 Mathematics Subject Classification: 37K10; 37K05 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/147362 |
|
dc.description.abstract |
We show that under certain technical assumptions any weakly nonlocal Hamiltonian structure compatible with a given nondegenerate weakly nonlocal symplectic structure J can be written as the Lie derivative of J −1 along a suitably chosen nonlocal vector field. Moreover, we present a new description for local Hamiltonian structures of arbitrary order compatible with a given nondegenerate local Hamiltonian structure of zero or first order, including Hamiltonian operators of the Dubrovin-Novikov type. |
uk_UA |
dc.description.sponsorship |
This paper is a contribution to the Vadim Kuznetsov Memorial Issue ‘Integrable Systems and Related Topics’. I am sincerely grateful to Prof. M. B laszak and Drs. M. Marvan, E.V. Ferapontov, M.V. Pavlov and R.G. Smirnov for stimulating discussions. I am also pleased to thank the referees for useful suggestions.This research was supported in part by the Czech Grant Agency (GA CR) under grant No. 201/04/0538, by the Ministry of Education, Youth and Sports of the Czech Republic (MSMTCR) under grant MSM 4781305904 and by Silesian University in Opava under grant IGS 1/2004. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Weakly Nonlocal Hamiltonian Structures: Lie Derivative and Compatibility |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті