Показати простий запис статті
dc.contributor.author |
Hijazi, O. |
|
dc.contributor.author |
Raulot, S. |
|
dc.date.accessioned |
2019-02-13T19:10:41Z |
|
dc.date.available |
2019-02-13T19:10:41Z |
|
dc.date.issued |
2007 |
|
dc.identifier.citation |
Branson's Q-curvature in Riemannian and Spin Geometry / O. Hijazi, S. Raulot // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 23 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2000 Mathematics Subject Classification: 53C20; 53C27; 58J50 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/147214 |
|
dc.description.abstract |
On a closed n-dimensional manifold, n ≥ 5, we compare the three basic conformally covariant operators: the Paneitz-Branson, the Yamabe and the Dirac operator (if the manifold is spin) through their first eigenvalues. On a closed 4-dimensional Riemannian manifold, we give a lower bound for the square of the first eigenvalue of the Yamabe operator in terms of the total Branson's Q-curvature. As a consequence, if the manifold is spin, we relate the first eigenvalue of the Dirac operator to the total Branson's Q-curvature. Equality cases are also characterized. |
uk_UA |
dc.description.sponsorship |
This paper is a contribution to the Proceedings of the 2007 Midwest Geometry Conference in honor of Thomas P. Branson. We would like to thank the referees for their careful reading and suggestions. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Branson's Q-curvature in Riemannian and Spin Geometry |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті