Показати простий запис статті

dc.contributor.author Hijazi, O.
dc.contributor.author Raulot, S.
dc.date.accessioned 2019-02-13T19:10:41Z
dc.date.available 2019-02-13T19:10:41Z
dc.date.issued 2007
dc.identifier.citation Branson's Q-curvature in Riemannian and Spin Geometry / O. Hijazi, S. Raulot // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 23 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2000 Mathematics Subject Classification: 53C20; 53C27; 58J50
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/147214
dc.description.abstract On a closed n-dimensional manifold, n ≥ 5, we compare the three basic conformally covariant operators: the Paneitz-Branson, the Yamabe and the Dirac operator (if the manifold is spin) through their first eigenvalues. On a closed 4-dimensional Riemannian manifold, we give a lower bound for the square of the first eigenvalue of the Yamabe operator in terms of the total Branson's Q-curvature. As a consequence, if the manifold is spin, we relate the first eigenvalue of the Dirac operator to the total Branson's Q-curvature. Equality cases are also characterized. uk_UA
dc.description.sponsorship This paper is a contribution to the Proceedings of the 2007 Midwest Geometry Conference in honor of Thomas P. Branson. We would like to thank the referees for their careful reading and suggestions. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Branson's Q-curvature in Riemannian and Spin Geometry uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис