Показати простий запис статті
dc.contributor.author |
Fulling, S.A. |
|
dc.date.accessioned |
2019-02-13T19:05:47Z |
|
dc.date.available |
2019-02-13T19:05:47Z |
|
dc.date.issued |
2007 |
|
dc.identifier.citation |
Vacuum Energy as Spectral Geometry / S.A. Fulling // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 60 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2000 Mathematics Subject Classification: 34B27; 81Q10; 58J50 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/147208 |
|
dc.description.abstract |
Quantum vacuum energy (Casimir energy) is reviewed for a mathematical audience as a topic in spectral theory. Then some one-dimensional systems are solved exactly, in terms of closed classical paths and periodic orbits. The relations among local spectral densities, energy densities, global eigenvalue densities, and total energies are demonstrated. This material provides background and motivation for the treatment of higher-dimensional systems (self-adjoint second-order partial differential operators) by semiclassical approximation and other methods. |
uk_UA |
dc.description.sponsorship |
This paper is a contribution to the Proceedings of the 2007 Midwest Geometry Conference in honor of Thomas P. Branson. This work has been supported by the National Science Foundation under Grants DMS-0405806 and PHY-0554849. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Vacuum Energy as Spectral Geometry |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті