Показати простий запис статті
dc.contributor.author |
Borshch, M.S. |
|
dc.contributor.author |
Zhdanov, V.I. |
|
dc.date.accessioned |
2019-02-13T18:54:44Z |
|
dc.date.available |
2019-02-13T18:54:44Z |
|
dc.date.issued |
2007 |
|
dc.identifier.citation |
Exact Solutions of the Equations of Relativistic Hydrodynamics Representing Potential Flows / M.S. Borshch, V.I. Zhdanov // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 24 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2000 Mathematics Subject Classification: 76Y05; 83C15; 83A05 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/147190 |
|
dc.description.abstract |
We use a connection between relativistic hydrodynamics and scalar field theory to generate exact analytic solutions describing non-stationary inhomogeneous flows of the perfect fluid with one-parametric equation of state (EOS) p = p(ε). For linear EOS p = κε we obtain self-similar solutions in the case of plane, cylindrical and spherical symmetries. In the case of extremely stiff EOS (κ = 1) we obtain ''monopole + dipole'' and ''monopole + quadrupole'' axially symmetric solutions. We also found some nonlinear EOSs that admit analytic solutions. |
uk_UA |
dc.description.sponsorship |
This paper is a contribution to the Proceedings of the Seventh International Conference “Symmetry in Nonlinear Mathematical Physics” (June 24–30, 2007, Kyiv, Ukraine). We are thankful to the referees of our paper for helpful remarks and suggestions. This work has been supported in part by “Cosmomicrophysica” program of National Academy of Sciences of Ukraine. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Exact Solutions of the Equations of Relativistic Hydrodynamics Representing Potential Flows |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті