Показати простий запис статті
dc.contributor.author |
Boyer, C.P. |
|
dc.date.accessioned |
2019-02-13T18:32:17Z |
|
dc.date.available |
2019-02-13T18:32:17Z |
|
dc.date.issued |
2011 |
|
dc.identifier.citation |
Completely Integrable Contact Hamiltonian Systems and Toric Contact Structures on S²×S³ / C.P. Boyer // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 58 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 53D42; 53C25 |
|
dc.identifier.other |
DOI:10.3842/SIGMA.2011.058 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/147180 |
|
dc.description.abstract |
I begin by giving a general discussion of completely integrable Hamiltonian systems in the setting of contact geometry. We then pass to the particular case of toric contact structures on the manifold S²×S³. In particular we give a complete solution to the contact equivalence problem for a class of toric contact structures, Yp,q, discovered by physicists by showing that Yp,q and Yp',q' are inequivalent as contact structures if and only if p≠p'. |
uk_UA |
dc.description.sponsorship |
This paper is a contribution to the Special Issue “Symmetry, Separation, Super-integrability and Special Functions (S⁴)”. The full collection is available at http://www.emis.de/journals/SIGMA/S4.html.
During the conference I enjoyed conversations with E. Kalnins, N. Kamran, J. Kress,
W. Miller Jr., and P. Winternitz. I also want to thank J. Pati, my collaborator in [25] without
whom the present paper could not have been written. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Completely Integrable Contact Hamiltonian Systems and Toric Contact Structures on S²×S³ |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті