Наукова електронна бібліотека
періодичних видань НАН України

Completely Integrable Contact Hamiltonian Systems and Toric Contact Structures on S²×S³

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Boyer, C.P.
dc.date.accessioned 2019-02-13T18:32:17Z
dc.date.available 2019-02-13T18:32:17Z
dc.date.issued 2011
dc.identifier.citation Completely Integrable Contact Hamiltonian Systems and Toric Contact Structures on S²×S³ / C.P. Boyer // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 58 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 53D42; 53C25
dc.identifier.other DOI:10.3842/SIGMA.2011.058
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/147180
dc.description.abstract I begin by giving a general discussion of completely integrable Hamiltonian systems in the setting of contact geometry. We then pass to the particular case of toric contact structures on the manifold S²×S³. In particular we give a complete solution to the contact equivalence problem for a class of toric contact structures, Yp,q, discovered by physicists by showing that Yp,q and Yp',q' are inequivalent as contact structures if and only if p≠p'. uk_UA
dc.description.sponsorship This paper is a contribution to the Special Issue “Symmetry, Separation, Super-integrability and Special Functions (S⁴)”. The full collection is available at http://www.emis.de/journals/SIGMA/S4.html. During the conference I enjoyed conversations with E. Kalnins, N. Kamran, J. Kress, W. Miller Jr., and P. Winternitz. I also want to thank J. Pati, my collaborator in [25] without whom the present paper could not have been written. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Completely Integrable Contact Hamiltonian Systems and Toric Contact Structures on S²×S³ uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис