Наукова електронна бібліотека
періодичних видань НАН України

Superintegrable Oscillator and Kepler Systems on Spaces of Nonconstant Curvature via the Stäckel Transform

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Ballesteros, A.
dc.contributor.author Enciso, A.
dc.contributor.author Herranz, F.J.
dc.contributor.author Ragnisco, O.
dc.contributor.author Riglioni, D.
dc.date.accessioned 2019-02-13T18:08:35Z
dc.date.available 2019-02-13T18:08:35Z
dc.date.issued 2011
dc.identifier.citation Superintegrable Oscillator and Kepler Systems on Spaces of Nonconstant Curvature via the Stäckel Transform / A. Ballesteros, A. Enciso, F.J. Herranz, O. Ragnisco, D. Riglioni // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 48 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 37J35; 70H06; 81R12
dc.identifier.other DOI:10.3842/SIGMA.2011.048
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/147172
dc.description.abstract The Stäckel transform is applied to the geodesic motion on Euclidean space, through the harmonic oscillator and Kepler-Coloumb potentials, in order to obtain maximally superintegrable classical systems on N-dimensional Riemannian spaces of nonconstant curvature. By one hand, the harmonic oscillator potential leads to two families of superintegrable systems which are interpreted as an intrinsic Kepler-Coloumb system on a hyperbolic curved space and as the so-called Darboux III oscillator. On the other, the Kepler-Coloumb potential gives rise to an oscillator system on a spherical curved space as well as to the Taub-NUT oscillator. Their integrals of motion are explicitly given. The role of the (flat/curved) Fradkin tensor and Laplace-Runge-Lenz N-vector for all of these Hamiltonians is highlighted throughout the paper. The corresponding quantum maximally superintegrable systems are also presented. uk_UA
dc.description.sponsorship This paper is a contribution to the Special Issue “Symmetry, Separation, Super-integrability and Special Functions (S⁴)”. The full collection is available at http://www.emis.de/journals/SIGMA/S4.html. This work was partially supported by the Spanish MICINN under grants MTM2010-18556 and FIS2008-00209, by the Junta de Castilla y Le´on (project GR224), by the Banco Santander–UCM (grant GR58/08-910556) and by the Italian–Spanish INFN–MICINN (project ACI2009-1083). F.J.H. is deeply grateful to W. Miller Jr. for very helpful suggestions on the St¨ackel transform as well on superintegrability. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Superintegrable Oscillator and Kepler Systems on Spaces of Nonconstant Curvature via the Stäckel Transform uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис