Показати простий запис статті

dc.contributor.author Coulembier, K.
dc.date.accessioned 2019-02-13T18:04:53Z
dc.date.available 2019-02-13T18:04:53Z
dc.date.issued 2011
dc.identifier.citation The Fourier Transform on Quantum Euclidean Space / K. Coulembier // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 36 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 17B37; 81R60; 33D50
dc.identifier.other DOI:10.3842/SIGMA.2011.047
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/147167
dc.description.abstract We study Fourier theory on quantum Euclidean space. A modified version of the general definition of the Fourier transform on a quantum space is used and its inverse is constructed. The Fourier transforms can be defined by their Bochner's relations and a new type of q-Hankel transforms using the first and second q-Bessel functions. The behavior of the Fourier transforms with respect to partial derivatives and multiplication with variables is studied. The Fourier transform acts between the two representation spaces for the harmonic oscillator on quantum Euclidean space. By using this property it is possible to define a Fourier transform on the entire Hilbert space of the harmonic oscillator, which is its own inverse and satisfies the Parseval theorem. uk_UA
dc.description.sponsorship This paper is a contribution to the Special Issue “Relationship of Orthogonal Polynomials and Special Functions with Quantum Groups and Integrable Systems”. The full collection is available at http://www.emis.de/journals/SIGMA/OPSF.html. The author would like to thank Hendrik De Bie for helpful suggestions and comments. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title The Fourier Transform on Quantum Euclidean Space uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис