Наукова електронна бібліотека
періодичних видань НАН України

On the Relationship between Two Notions of Compatibility for Bi-Hamiltonian Systems

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Santoprete, M.
dc.date.accessioned 2019-02-13T17:58:04Z
dc.date.available 2019-02-13T17:58:04Z
dc.date.issued 2015
dc.identifier.citation On the Relationship between Two Notions of Compatibility for Bi-Hamiltonian Systems / M. Santoprete // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 15 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 70H06; 70G45; 37K10
dc.identifier.other DOI:10.3842/SIGMA.2015.089
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/147160
dc.description.abstract Bi-Hamiltonian structures are of great importance in the theory of integrable Hamiltonian systems. The notion of compatibility of symplectic structures is a key aspect of bi-Hamiltonian systems. Because of this, a few different notions of compatibility have been introduced. In this paper we show that, under some additional assumptions, compatibility in the sense of Magri implies a notion of compatibility due to Fassò and Ratiu, that we dub bi-affine compatibility. We present two proofs of this fact. The first one uses the uniqueness of the connection parallelizing all the Hamiltonian vector fields tangent to the leaves of a Lagrangian foliation. The second proof uses Darboux-Nijenhuis coordinates and symplectic connections. uk_UA
dc.description.sponsorship This paper is a contribution to the Special Issue on Analytical Mechanics and Dif ferential Geometry in honour of Sergio Benenti. The full collection is available at http://www.emis.de/journals/SIGMA/Benenti.html. We would like to thank one of the anonymous reviewers for suggesting to us that Theorem 2 can be proved by using the uniqueness of the connection parallelizing all the Hamiltonian vector fields tangent to the leaves of a Lagrangian foliation. This work was supported by an NSERC Discovery Grant. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title On the Relationship between Two Notions of Compatibility for Bi-Hamiltonian Systems uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис