Показати простий запис статті
dc.contributor.author |
Santoprete, M. |
|
dc.date.accessioned |
2019-02-13T17:58:04Z |
|
dc.date.available |
2019-02-13T17:58:04Z |
|
dc.date.issued |
2015 |
|
dc.identifier.citation |
On the Relationship between Two Notions of Compatibility for Bi-Hamiltonian Systems / M. Santoprete // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 15 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 70H06; 70G45; 37K10 |
|
dc.identifier.other |
DOI:10.3842/SIGMA.2015.089 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/147160 |
|
dc.description.abstract |
Bi-Hamiltonian structures are of great importance in the theory of integrable Hamiltonian systems. The notion of compatibility of symplectic structures is a key aspect of bi-Hamiltonian systems. Because of this, a few different notions of compatibility have been introduced. In this paper we show that, under some additional assumptions, compatibility in the sense of Magri implies a notion of compatibility due to Fassò and Ratiu, that we dub bi-affine compatibility. We present two proofs of this fact. The first one uses the uniqueness of the connection parallelizing all the Hamiltonian vector fields tangent to the leaves of a Lagrangian foliation. The second proof uses Darboux-Nijenhuis coordinates and symplectic connections. |
uk_UA |
dc.description.sponsorship |
This paper is a contribution to the Special Issue on Analytical Mechanics and Dif ferential Geometry in honour
of Sergio Benenti. The full collection is available at http://www.emis.de/journals/SIGMA/Benenti.html.
We would like to thank one of the anonymous reviewers for suggesting to us that Theorem 2
can be proved by using the uniqueness of the connection parallelizing all the Hamiltonian vector
fields tangent to the leaves of a Lagrangian foliation. This work was supported by an NSERC
Discovery Grant. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
On the Relationship between Two Notions of Compatibility for Bi-Hamiltonian Systems |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті