Показати простий запис статті
dc.contributor.author |
Dąbrowski, L. |
|
dc.contributor.author |
Hadfield, T. |
|
dc.contributor.author |
Hajac, P.M. |
|
dc.date.accessioned |
2019-02-13T17:50:17Z |
|
dc.date.available |
2019-02-13T17:50:17Z |
|
dc.date.issued |
2015 |
|
dc.identifier.citation |
Equivariant Join and Fusion of Noncommutative Algebras / L. Dąbrowski, T. Hadfield, P.M. Hajac // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 13 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 46L85; 58B32 |
|
dc.identifier.other |
DOI:10.3842/SIGMA.2015.082 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/147156 |
|
dc.description.abstract |
We translate the concept of the join of topological spaces to the language of C∗-algebras, replace the C∗-algebra of functions on the interval [0,1] with evaluation maps at 0 and 1 by a unital C∗-algebra C with appropriate two surjections, and introduce the notion of the fusion of unital C∗-algebras. An appropriate modification of this construction yields the fusion comodule algebra of a comodule algebra P with the coacting Hopf algebra H. We prove that, if the comodule algebra P is principal, then so is the fusion comodule algebra. When C=C([0,1]) and the two surjections are evaluation maps at 0 and 1, this result is a noncommutative-algebraic incarnation of the fact that, for a compact Hausdorff principal G-bundle X, the diagonal action of G on the join X∗G is free. |
uk_UA |
dc.description.sponsorship |
All authors are grateful to Piotr M. So ltan and Karen R. Strung for references concerning the
minimal tensor product and the Jiang–Su C
∗
-algebra respectively. Ludwik D¸abrowski and Piotr
M. Hajac were partially supported by PRIN 2010-11 grant “Operator Algebras, Noncommutative
Geometry and Applications” and NCN grant 2011/01/B/ST1/06474, respectively. Tom Hadfield
was financed via the EU Transfer of Knowledge contract MKTD-CT-2004-509794. Also, Piotr
M. Hajac is very thankful to SISSA for its hospitality. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Equivariant Join and Fusion of Noncommutative Algebras |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті