Показати простий запис статті

dc.contributor.author Dąbrowski, L.
dc.contributor.author Hadfield, T.
dc.contributor.author Hajac, P.M.
dc.date.accessioned 2019-02-13T17:50:17Z
dc.date.available 2019-02-13T17:50:17Z
dc.date.issued 2015
dc.identifier.citation Equivariant Join and Fusion of Noncommutative Algebras / L. Dąbrowski, T. Hadfield, P.M. Hajac // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 13 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 46L85; 58B32
dc.identifier.other DOI:10.3842/SIGMA.2015.082
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/147156
dc.description.abstract We translate the concept of the join of topological spaces to the language of C∗-algebras, replace the C∗-algebra of functions on the interval [0,1] with evaluation maps at 0 and 1 by a unital C∗-algebra C with appropriate two surjections, and introduce the notion of the fusion of unital C∗-algebras. An appropriate modification of this construction yields the fusion comodule algebra of a comodule algebra P with the coacting Hopf algebra H. We prove that, if the comodule algebra P is principal, then so is the fusion comodule algebra. When C=C([0,1]) and the two surjections are evaluation maps at 0 and 1, this result is a noncommutative-algebraic incarnation of the fact that, for a compact Hausdorff principal G-bundle X, the diagonal action of G on the join X∗G is free. uk_UA
dc.description.sponsorship All authors are grateful to Piotr M. So ltan and Karen R. Strung for references concerning the minimal tensor product and the Jiang–Su C ∗ -algebra respectively. Ludwik D¸abrowski and Piotr M. Hajac were partially supported by PRIN 2010-11 grant “Operator Algebras, Noncommutative Geometry and Applications” and NCN grant 2011/01/B/ST1/06474, respectively. Tom Hadfield was financed via the EU Transfer of Knowledge contract MKTD-CT-2004-509794. Also, Piotr M. Hajac is very thankful to SISSA for its hospitality. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Equivariant Join and Fusion of Noncommutative Algebras uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис