Наукова електронна бібліотека
періодичних видань НАН України

BiHom-Associative Algebras, BiHom-Lie Algebras and BiHom-Bialgebras

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Graziani, G.
dc.contributor.author Makhlouf, A.
dc.contributor.author Menini, C.
dc.contributor.author Panaite, F.
dc.date.accessioned 2019-02-13T17:49:07Z
dc.date.available 2019-02-13T17:49:07Z
dc.date.issued 2015
dc.identifier.citation BiHom-Associative Algebras, BiHom-Lie Algebras and BiHom-Bialgebras / G. Graziani, A. Makhlouf, C. Menini, F. Panaite // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 32 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 17A99; 18D10; 16T99
dc.identifier.other DOI:10.3842/SIGMA.2015.086
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/147155
dc.description.abstract A BiHom-associative algebra is a (nonassociative) algebra A endowed with two commuting multiplicative linear maps α,β:A→A such that α(a)(bc)=(ab)β(c), for all a,b,c∈A. This concept arose in the study of algebras in so-called group Hom-categories. In this paper, we introduce as well BiHom-Lie algebras (also by using the categorical approach) and BiHom-bialgebras. We discuss these new structures by presenting some basic properties and constructions (representations, twisted tensor products, smash products etc). uk_UA
dc.description.sponsorship This paper was written while Claudia Menini was a member of GNSAGA. Florin Panaite was supported by a grant of the Romanian National Authority for Scientific Research, CNCSUEFISCDI, project number PN-II-ID-PCE-2011-3-0635, contract nr. 253/5.10.2011. Parts of this paper have been written while Florin Panaite was a visiting professor at University of Ferrara in September 2014, supported by INdAM, and a visiting scholar at the Erwin Schrodinger Institute in Vienna in July 2014 in the framework of the “Combinatorics, Geometry and Physics” programme; he would like to thank both these institutions for their warm hospitality. The authors are grateful to the referees for their remarks and questions. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title BiHom-Associative Algebras, BiHom-Lie Algebras and BiHom-Bialgebras uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис