Показати простий запис статті
dc.contributor.author |
Graziani, G. |
|
dc.contributor.author |
Makhlouf, A. |
|
dc.contributor.author |
Menini, C. |
|
dc.contributor.author |
Panaite, F. |
|
dc.date.accessioned |
2019-02-13T17:49:07Z |
|
dc.date.available |
2019-02-13T17:49:07Z |
|
dc.date.issued |
2015 |
|
dc.identifier.citation |
BiHom-Associative Algebras, BiHom-Lie Algebras and BiHom-Bialgebras / G. Graziani, A. Makhlouf, C. Menini, F. Panaite // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 32 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 17A99; 18D10; 16T99 |
|
dc.identifier.other |
DOI:10.3842/SIGMA.2015.086 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/147155 |
|
dc.description.abstract |
A BiHom-associative algebra is a (nonassociative) algebra A endowed with two commuting multiplicative linear maps α,β:A→A such that α(a)(bc)=(ab)β(c), for all a,b,c∈A. This concept arose in the study of algebras in so-called group Hom-categories. In this paper, we introduce as well BiHom-Lie algebras (also by using the categorical approach) and BiHom-bialgebras. We discuss these new structures by presenting some basic properties and constructions (representations, twisted tensor products, smash products etc). |
uk_UA |
dc.description.sponsorship |
This paper was written while Claudia Menini was a member of GNSAGA. Florin Panaite was
supported by a grant of the Romanian National Authority for Scientific Research, CNCSUEFISCDI,
project number PN-II-ID-PCE-2011-3-0635, contract nr. 253/5.10.2011. Parts of
this paper have been written while Florin Panaite was a visiting professor at University of Ferrara
in September 2014, supported by INdAM, and a visiting scholar at the Erwin Schrodinger
Institute in Vienna in July 2014 in the framework of the “Combinatorics, Geometry and Physics”
programme; he would like to thank both these institutions for their warm hospitality.
The authors are grateful to the referees for their remarks and questions. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
BiHom-Associative Algebras, BiHom-Lie Algebras and BiHom-Bialgebras |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті