Показати простий запис статті
dc.contributor.author |
Lasserre, J.B. |
|
dc.date.accessioned |
2019-02-13T17:42:19Z |
|
dc.date.available |
2019-02-13T17:42:19Z |
|
dc.date.issued |
2015 |
|
dc.identifier.citation |
Moments and Legendre-Fourier Series for Measures Supported on Curves / J.B. Lasserre // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 15 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 42C05; 42C10; 42A16; 44A60 |
|
dc.identifier.other |
DOI:10.3842/SIGMA.2015.077 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/147149 |
|
dc.description.abstract |
Some important problems (e.g., in optimal transport and optimal control) have a relaxed (or weak) formulation in a space of appropriate measures which is much easier to solve. However, an optimal solution μ of the latter solves the former if and only if the measure μ is supported on a ''trajectory'' {(t,x(t)):t∈[0,T]} for some measurable function x(t). We provide necessary and sufficient conditions on moments (γij) of a measure dμ(x,t) on [0,1]² to ensure that μ is supported on a trajectory {(t,x(t)):t∈[0,1]}. Those conditions are stated in terms of Legendre-Fourier coefficients fj=(fj(i)) associated with some functions fj:[0,1]→R, j=1,…, where each fj is obtained from the moments γji, i=0,1,…, of μ. |
uk_UA |
dc.description.sponsorship |
This paper is a contribution to the Special Issue on Orthogonal Polynomials, Special Functions and Applications.
The full collection is available at http://www.emis.de/journals/SIGMA/OPSFA2015.html.
Research funded by the European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation program (grant agreement ERC-ADG 666981 TAMING). |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Moments and Legendre-Fourier Series for Measures Supported on Curves |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті