Показати простий запис статті
dc.contributor.author |
Smith, A.D. |
|
dc.date.accessioned |
2019-02-13T17:02:07Z |
|
dc.date.available |
2019-02-13T17:02:07Z |
|
dc.date.issued |
2015 |
|
dc.identifier.citation |
Constructing Involutive Tableaux with Guillemin Normal Form / A.D. Smith // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 9 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 58A15; 58H10 |
|
dc.identifier.other |
DOI:10.3842/SIGMA.2015.053 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/147123 |
|
dc.description.abstract |
Involutivity is the algebraic property that guarantees solutions to an analytic and torsion-free exterior differential system or partial differential equation via the Cartan-Kähler theorem. Guillemin normal form establishes that the prolonged symbol of an involutive system admits a commutativity property on certain subspaces of the prolonged tableau. This article examines Guillemin normal form in detail, aiming at a more systematic approach to classifying involutive systems. The main result is an explicit quadratic condition for involutivity of the type suggested but not completed in Chapter IV, § 5 of the book Exterior Differential Systems by Bryant, Chern, Gardner, Goldschmidt, and Griffiths. This condition enhances Guillemin normal form and characterizes involutive tableaux. |
uk_UA |
dc.description.sponsorship |
Thanks to Deane Yang for several helpful conversations. Thanks also to the anonymous referees,
whose suggestions improved the style and focus of this article significantly. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Constructing Involutive Tableaux with Guillemin Normal Form |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті