Показати простий запис статті

dc.contributor.author Dimakis, A.
dc.contributor.author Müller-Hoissen, F.
dc.date.accessioned 2019-02-13T16:25:31Z
dc.date.available 2019-02-13T16:25:31Z
dc.date.issued 2015
dc.identifier.citation Simplex and Polygon Equations / A. Dimakis, F. Müller-Hoissen // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 107 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 06A06; 06A07; 52Bxx; 82B23
dc.identifier.other DOI:10.3842/SIGMA.2015.042
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/147105
dc.description.abstract It is shown that higher Bruhat orders admit a decomposition into a higher Tamari order, the corresponding dual Tamari order, and a ''mixed order''. We describe simplex equations (including the Yang-Baxter equation) as realizations of higher Bruhat orders. Correspondingly, a family of ''polygon equations'' realizes higher Tamari orders. They generalize the well-known pentagon equation. The structure of simplex and polygon equations is visualized in terms of deformations of maximal chains in posets forming 1-skeletons of polyhedra. The decomposition of higher Bruhat orders induces a reduction of the N-simplex equation to the (N+1)-gon equation, its dual, and a compatibility equation. uk_UA
dc.description.sponsorship We have to thank an anonymous referee for comments that led to some corrections in our previous version of Section 2.2. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Simplex and Polygon Equations uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис