Показати простий запис статті
dc.contributor.author |
Dimakis, A. |
|
dc.contributor.author |
Müller-Hoissen, F. |
|
dc.date.accessioned |
2019-02-13T16:25:31Z |
|
dc.date.available |
2019-02-13T16:25:31Z |
|
dc.date.issued |
2015 |
|
dc.identifier.citation |
Simplex and Polygon Equations / A. Dimakis, F. Müller-Hoissen // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 107 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 06A06; 06A07; 52Bxx; 82B23 |
|
dc.identifier.other |
DOI:10.3842/SIGMA.2015.042 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/147105 |
|
dc.description.abstract |
It is shown that higher Bruhat orders admit a decomposition into a higher Tamari order, the corresponding dual Tamari order, and a ''mixed order''. We describe simplex equations (including the Yang-Baxter equation) as realizations of higher Bruhat orders. Correspondingly, a family of ''polygon equations'' realizes higher Tamari orders. They generalize the well-known pentagon equation. The structure of simplex and polygon equations is visualized in terms of deformations of maximal chains in posets forming 1-skeletons of polyhedra. The decomposition of higher Bruhat orders induces a reduction of the N-simplex equation to the (N+1)-gon equation, its dual, and a compatibility equation. |
uk_UA |
dc.description.sponsorship |
We have to thank an anonymous referee for comments that led to some corrections in our
previous version of Section 2.2. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Simplex and Polygon Equations |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті