Показати простий запис статті

dc.contributor.author Brezhnev, Y.V.
dc.date.accessioned 2019-02-12T20:34:07Z
dc.date.available 2019-02-12T20:34:07Z
dc.date.issued 2015
dc.identifier.citation On a Quantization of the Classical θ-Functions / Y.V. Brezhnev // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 19 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 14H70; 33E05; 33E10; 37N20; 37J35; 81S10
dc.identifier.other DOI:10.3842/SIGMA.2015.035
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/147012
dc.description.abstract The Jacobi theta-functions admit a definition through the autonomous differential equations (dynamical system); not only through the famous Fourier theta-series. We study this system in the framework of Hamiltonian dynamics and find corresponding Poisson brackets. Availability of these ingredients allows us to state the problem of a canonical quantization to these equations and disclose some important problems. In a particular case the problem is completely solvable in the sense that spectrum of the Hamiltonian can be found. The spectrum is continuous, has a band structure with infinite number of lacunae, and is determined by the Mathieu equation: the Schrödinger equation with a periodic cos-type potential. uk_UA
dc.description.sponsorship This paper is a contribution to the Special Issue on Algebraic Methods in Dynamical Systems. The full collection is available at http://www.emis.de/journals/SIGMA/AMDS2014.html. The author would like to thank Dima Kaparulin and Peter Kazinsky for stimulating discussions and my special thanks are addressed to S. Lyakhovich and A. Sharapov for valuable consultations. Also, much gratitude is extended to the anonymous referee for helpful suggestions and constructive criticism, which resulted in considerable improvement of the final text. The study was supported by the Tomsk State University Academic D. Mendeleev Fund Program. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title On a Quantization of the Classical θ-Functions uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис