Наукова електронна бібліотека
періодичних видань НАН України

Fourier and Gegenbauer Expansions for a Fundamental Solution of Laplace's Equation in Hyperspherical Geometry

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Cohl, H.S.
dc.contributor.author Palmer, R.M.
dc.date.accessioned 2019-02-12T18:16:31Z
dc.date.available 2019-02-12T18:16:31Z
dc.date.issued 2015
dc.identifier.citation Fourier and Gegenbauer Expansions for a Fundamental Solution of Laplace's Equation in Hyperspherical Geometry / H.S. Cohl, R.M. Palmer // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 28 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 31C12; 32Q10; 33C05; 33C45; 33C55; 35J05; 35A08; 42A16
dc.identifier.other DOI:10.3842/SIGMA.2015.015
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/147003
dc.description.abstract For a fundamental solution of Laplace's equation on the R-radius d-dimensional hypersphere, we compute the azimuthal Fourier coefficients in closed form in two and three dimensions. We also compute the Gegenbauer polynomial expansion for a fundamental solution of Laplace's equation in hyperspherical geometry in geodesic polar coordinates. From this expansion in three-dimensions, we derive an addition theorem for the azimuthal Fourier coefficients of a fundamental solution of Laplace's equation on the 3-sphere. Applications of our expansions are given, namely closed-form solutions to Poisson's equation with uniform density source distributions. The Newtonian potential is obtained for the 2-disc on the 2-sphere and 3-ball and circular curve segment on the 3-sphere. Applications are also given to the superintegrable Kepler-Coulomb and isotropic oscillator potentials. uk_UA
dc.description.sponsorship This paper is a contribution to the Special Issue on Exact Solvability and Symmetry Avatars in honour of Luc Vinet. The full collection is available at http://www.emis.de/journals/SIGMA/ESSA2014.html. Much thanks to Willard Miller and George Pogosyan for valuable discussions. We would also like to express our gratitude to the anonymous referees and the editors for this special issue in honour of Luc Vinet, for their significant contributions. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Fourier and Gegenbauer Expansions for a Fundamental Solution of Laplace's Equation in Hyperspherical Geometry uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис