Показати простий запис статті
dc.contributor.author |
Ormerod, C.M. |
|
dc.date.accessioned |
2019-02-11T18:05:42Z |
|
dc.date.available |
2019-02-11T18:05:42Z |
|
dc.date.issued |
2011 |
|
dc.identifier.citation |
The Lattice Structure of Connection Preserving Deformations for q-Painlevé Equations I / C.M. Ormerod // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 32 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 34M55; 39A13 |
|
dc.identifier.other |
DOI:10.3842/SIGMA.2011.045 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/146862 |
|
dc.description.abstract |
We wish to explore a link between the Lax integrability of the q-Painlevé equations and the symmetries of the q-Painlevé equations. We shall demonstrate that the connection preserving deformations that give rise to the q-Painlevé equations may be thought of as elements of the groups of Schlesinger transformations of their associated linear problems. These groups admit a very natural lattice structure. Each Schlesinger transformation induces a Bäcklund transformation of the q-Painlevé equation. Each translational Bäcklund transformation may be lifted to the level of the associated linear problem, effectively showing that each translational Bäcklund transformation admits a Lax pair. We will demonstrate this framework for the q-Painlevé equations up to and including q-PVI. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
The Lattice Structure of Connection Preserving Deformations for q-Painlevé Equations I |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті