Наукова електронна бібліотека
періодичних видань НАН України

Symmetries of the Free Schrödinger Equation in the Non-Commutative Plane

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Batlle, C.
dc.contributor.author Gomis, J.
dc.contributor.author Kamimura, K.
dc.date.accessioned 2019-02-11T17:07:27Z
dc.date.available 2019-02-11T17:07:27Z
dc.date.issued 2014
dc.identifier.citation Symmetries of the Free Schrödinger Equation in the Non-Commutative Plane / C. Batlle, J. Gomis, K.Kamimura // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 25 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 81R60; 81S05; 83C65
dc.identifier.other DOI:10.3842/SIGMA.2014.011
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/146844
dc.description.abstract We study all the symmetries of the free Schrödinger equation in the non-commutative plane. These symmetry transformations form an infinite-dimensional Weyl algebra that appears naturally from a two-dimensional Heisenberg algebra generated by Galilean boosts and momenta. These infinite high symmetries could be useful for constructing non-relativistic interacting higher spin theories. A finite-dimensional subalgebra is given by the Schrödinger algebra which, besides the Galilei generators, contains also the dilatation and the expansion. We consider the quantization of the symmetry generators in both the reduced and extended phase spaces, and discuss the relation between both approaches. uk_UA
dc.description.sponsorship This paper is a contribution to the Special Issue on Deformations of Space-Time and its Symmetries. The full collection is available at http://www.emis.de/journals/SIGMA/space-time.html. We thank Jorge Zanelli for collaboration in some parts of this work and Mikhail Plyushchay for reading the manuscript. We also thank Adolfo Azc´arraga and Jurek Lukierski for discussions, and Rabin Banerjee for letting us know about the results in [3]. CB was partially supported by Spanish Ministry of Economy and Competitiveness project DPI2011-25649. We also acknowledge partial financial support from projects FP2010-20807-C02-01, 2009SGR502 and CPAN Consolider CSD 2007-00042. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Symmetries of the Free Schrödinger Equation in the Non-Commutative Plane uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис