Наукова електронна бібліотека
періодичних видань НАН України

A ''Continuous'' Limit of the Complementary Bannai-Ito Polynomials: Chihara Polynomials

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Genest, V.X.
dc.contributor.author Vinet, L.
dc.contributor.author Zhedanov, A.
dc.date.accessioned 2019-02-11T16:34:49Z
dc.date.available 2019-02-11T16:34:49Z
dc.date.issued 2014
dc.identifier.citation A ''Continuous'' Limit of the Complementary Bannai-Ito Polynomials: Chihara Polynomials / V.X. Genest, L. Vinet, A. Zhedanov // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 25 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 33C45
dc.identifier.other DOI:10.3842/SIGMA.2014.038
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/146825
dc.description.abstract A novel family of −1 orthogonal polynomials called the Chihara polynomials is characterized. The polynomials are obtained from a ''continuous'' limit of the complementary Bannai-Ito polynomials, which are the kernel partners of the Bannai-Ito polynomials. The three-term recurrence relation and the explicit expression in terms of Gauss hypergeometric functions are obtained through a limit process. A one-parameter family of second-order differential Dunkl operators having these polynomials as eigenfunctions is also exhibited. The quadratic algebra with involution encoding this bispectrality is obtained. The orthogonality measure is derived in two different ways: by using Chihara's method for kernel polynomials and, by obtaining the symmetry factor for the one-parameter family of Dunkl operators. It is shown that the polynomials are related to the big −1 Jacobi polynomials by a Christoffel transformation and that they can be obtained from the big q-Jacobi by a q→−1 limit. The generalized Gegenbauer/Hermite polynomials are respectively seen to be special/limiting cases of the Chihara polynomials. A one-parameter extension of the generalized Hermite polynomials is proposed. uk_UA
dc.description.sponsorship V.X.G. holds a fellowship from the Natural Sciences and Engineering Research Council of Canada (NSERC). The research of L.V. is supported in part by NSERC. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title A ''Continuous'' Limit of the Complementary Bannai-Ito Polynomials: Chihara Polynomials uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис