Показати простий запис статті
dc.contributor.author |
Leuther, T. |
|
dc.contributor.author |
Radoux, F. |
|
dc.date.accessioned |
2019-02-11T15:28:17Z |
|
dc.date.available |
2019-02-11T15:28:17Z |
|
dc.date.issued |
2011 |
|
dc.identifier.citation |
Natural and Projectively Invariant Quantizations on Supermanifolds / T. Leuther, F. Radoux // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 16 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 53B05; 53B10; 53D50; 58A50 |
|
dc.identifier.other |
DOI:10.3842/SIGMA.2011.034 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/146803 |
|
dc.description.abstract |
The existence of a natural and projectively invariant quantization in the sense of P. Lecomte [Progr. Theoret. Phys. Suppl. (2001), no. 144, 125-132] was proved by M. Bordemann [math.DG/0208171], using the framework of Thomas-Whitehead connections. We extend the problem to the context of supermanifolds and adapt M. Bordemann's method in order to solve it. The obtained quantization appears as the natural globalization of the pgl(n+1|m)-equivariant quantization on Rn|m constructed by P. Mathonet and F. Radoux in [arXiv:1003.3320]. Our quantization is also a prolongation to arbitrary degree symbols of the projectively invariant quantization constructed by J. George in [arXiv:0909.5419] for symbols of degree two. |
uk_UA |
dc.description.sponsorship |
It is a pleasure to thank P. Mathonet for fruitful discussions. We also thank the referees for
suggestions leading to great improvements of the original paper. Finally, F. Radoux thanks the Belgian FNRS for his research fellowship. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Natural and Projectively Invariant Quantizations on Supermanifolds |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті