Показати простий запис статті
dc.contributor.author |
Ghorbel, A. |
|
dc.date.accessioned |
2019-02-11T15:25:19Z |
|
dc.date.available |
2019-02-11T15:25:19Z |
|
dc.date.issued |
2011 |
|
dc.identifier.citation |
Harmonic Analysis in One-Parameter Metabelian Nilmanifolds / A. Ghorbel // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 18 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/146800 |
|
dc.description.abstract |
Let G be a connected, simply connected one-parameter metabelian nilpotent Lie group, that means, the corresponding Lie algebra has a one-codimensional abelian subalgebra. In this article we show that G contains a discrete cocompact subgroup. Given a discrete cocompact subgroup Γ of G, we define the quasi-regular representation τ=indΓG1 of G. The basic problem considered in this paper concerns the decomposition of τ into irreducibles. We give an orbital description of the spectrum, the multiplicity function and we construct an explicit intertwining operator between τ and its desintegration without considering multiplicities. Finally, unlike the Moore inductive algorithm for multiplicities on nilmanifolds, we carry out here a direct computation to get the multiplicity formula. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Harmonic Analysis in One-Parameter Metabelian Nilmanifolds |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті