Наукова електронна бібліотека
періодичних видань НАН України

Fermionic Basis in Conformal Field Theory and Thermodynamic Bethe Ansatz for Excited States

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Boos, H.
dc.date.accessioned 2019-02-11T15:12:00Z
dc.date.available 2019-02-11T15:12:00Z
dc.date.issued 2011
dc.identifier.citation Fermionic Basis in Conformal Field Theory and Thermodynamic Bethe Ansatz for Excited States / H. Boos // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 20 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 82B20; 82B21; 82B23; 81T40; 81Q80
dc.identifier.other DOI:10.3842/SIGMA.2011.007
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/146787
dc.description.abstract We generalize the results of [Comm. Math. Phys. 299 (2010), 825-866] (hidden Grassmann structure IV) to the case of excited states of the transfer matrix of the six-vertex model acting in the so-called Matsubara direction. We establish an equivalence between a scaling limit of the partition function of the six-vertex model on a cylinder with quasi-local operators inserted and special boundary conditions, corresponding to particle-hole excitations, on the one hand, and certain three-point correlation functions of conformal field theory (CFT) on the other hand. As in hidden Grassmann structure IV, the fermionic basis developed in previous papers and its conformal limit are used for a description of the quasi-local operators. In paper IV we claimed that in the conformal limit the fermionic creation operators generate a basis equivalent to the basis of the descendant states in the conformal field theory modulo integrals of motion suggested by A. Zamolodchikov (1987). Here we argue that, in order to completely determine the transformation between the above fermionic basis and the basis of descendants in the CFT, we need to involve excitations. On the side of the lattice model we use the excited-state TBA approach. We consider in detail the case of the descendant at level 8. uk_UA
dc.description.sponsorship This paper is a contribution to the Special Issue “Relationship of Orthogonal Polynomials and Special Functions with Quantum Groups and Integrable Systems”. The full collection is available at http://www.emis.de/journals/SIGMA/OPSF.html. Our special thanks go to M. Jimbo, T. Miwa and F. Smirnov with whom the work on this paper was started. Also we would like to thank F. G¨ohmann, A. Kl¨umper and S. Lukyanov for many stimulating discussions. We are grateful to the Volkswagen Foundation for financial support. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Fermionic Basis in Conformal Field Theory and Thermodynamic Bethe Ansatz for Excited States uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис