Показати простий запис статті
dc.contributor.author |
Najarbashi, G. |
|
dc.contributor.author |
Maleki, Yu. |
|
dc.date.accessioned |
2019-02-11T14:56:17Z |
|
dc.date.available |
2019-02-11T14:56:17Z |
|
dc.date.issued |
2011 |
|
dc.identifier.citation |
Entanglement of Grassmannian Coherent States for Multi-Partite n-Level Systems / G. Najarbashi, Yu. Maleki // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 32 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 81R30; 15A75; 81P40 |
|
dc.identifier.other |
DOI:10.3842/SIGMA.2011.011 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/146777 |
|
dc.description.abstract |
In this paper, we investigate the entanglement of multi-partite Grassmannian coherent states (GCSs) described by Grassmann numbers for n>2 degree of nilpotency. Choosing an appropriate weight function, we show that it is possible to construct some well-known entangled pure states, consisting of GHZ, W, Bell, cluster type and bi-separable states, which are obtained by integrating over tensor product of GCSs. It is shown that for three level systems, the Grassmann creation and annihilation operators b and b† together with bz form a closed deformed algebra, i.e., SUq(2) with q=e2πi/3, which is useful to construct entangled qutrit-states. The same argument holds for three level squeezed states. Moreover combining the Grassmann and bosonic coherent states we construct maximal entangled super coherent states. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Entanglement of Grassmannian Coherent States for Multi-Partite n-Level Systems |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті