Наукова електронна бібліотека
періодичних видань НАН України

Integration of Cocycles and Lefschetz Number Formulae for Differential Operators

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Ramadoss, A.C.
dc.date.accessioned 2019-02-11T14:54:27Z
dc.date.available 2019-02-11T14:54:27Z
dc.date.issued 2011
dc.identifier.citation Integration of Cocycles and Lefschetz Number Formulae for Differential Operators / A.C. Ramadoss // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 23 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 16E40; 32L05; 32C38; 58J42
dc.identifier.other DOI:10.3842/SIGMA.2011.010
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/146775
dc.description.abstract Let E be a holomorphic vector bundle on a complex manifold X such that dimCX=n. Given any continuous, basic Hochschild 2n-cocycle ψ2n of the algebra Diffn of formal holomorphic differential operators, one obtains a 2n-form fε,ψ2n(D) from any holomorphic differential operator D on E. We apply our earlier results [J. Noncommut. Geom. 2 (2008), 405-448; J. Noncommut. Geom. 3 (2009), 27-45] to show that ∫X fε,ψ2n(D) gives the Lefschetz number of D upto a constant independent of X and ε. In addition, we obtain a ''local'' result generalizing the above statement. When ψ2n is the cocycle from [Duke Math. J. 127 (2005), 487-517], we obtain a new proof as well as a generalization of the Lefschetz number theorem of Engeli-Felder. We also obtain an analogous ''local'' result pertaining to B. Shoikhet's construction of the holomorphic noncommutative residue of a differential operator for trivial vector bundles on complex parallelizable manifolds. This enables us to give a rigorous construction of the holomorphic noncommutative residue of D defined by B. Shoikhet when E is an arbitrary vector bundle on an arbitrary compact complex manifold X. Our local result immediately yields a proof of a generalization of Conjecture 3.3 of [Geom. Funct. Anal. 11 (2001), 1096-1124]. uk_UA
dc.description.sponsorship I am grateful to Giovanni Felder and Thomas Willwacher for some very useful discussions. This work would not have reached its current form without their pointing out important shortcomings in earlier versions. I am also grateful to Boris Shoikhet for useful discussions. I thank the referees of this article for their constructive suggestions. This work was done (prior to my joining my current position) partly at Cornell University and partly at IHES. I am grateful to both these institutions for providing me with a congenial work atmosphere. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Integration of Cocycles and Lefschetz Number Formulae for Differential Operators uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис