Показати простий запис статті
dc.contributor.author |
Baum, P.F. |
|
dc.contributor.author |
Hajac, P.M. |
|
dc.date.accessioned |
2019-02-10T19:06:55Z |
|
dc.date.available |
2019-02-10T19:06:55Z |
|
dc.date.issued |
2014 |
|
dc.identifier.citation |
Local Proof of Algebraic Characterization of Free Actions / P.F. Baum, P.M. Hajac // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 10 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 22C05; 55R10; 57S05; 57S10 |
|
dc.identifier.other |
DOI:10.3842/SIGMA.2014.060 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/146694 |
|
dc.description.abstract |
Let G be a compact Hausdorff topological group acting on a compact Hausdorff topological space X. Within the C∗-algebra C(X) of all continuous complex-valued functions on X, there is the Peter-Weyl algebra PG(X) which is the (purely algebraic) direct sum of the isotypical components for the action of G on C(X). We prove that the action of G on X is free if and only if the canonical map PG(X)⊗C(X/G)PG(X)→PG(X)⊗O(G) is bijective. Here both tensor products are purely algebraic, and O(G) denotes the Hopf algebra of ''polynomial'' functions on G. |
uk_UA |
dc.description.sponsorship |
This paper is a contribution to the Special Issue on Noncommutative Geometry and Quantum Groups in
honor of Marc A. Rief fel. The full collection is available at http://www.emis.de/journals/SIGMA/Rieffel.html.
We thank the referees for the careful attention they have given to this paper. This work was
partially supported by NCN grant 2011/01/B/ST1/06474. P.F. Baum was partially supported
by NSF grant DMS 0701184. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Local Proof of Algebraic Characterization of Free Actions |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті