Наукова електронна бібліотека
періодичних видань НАН України

Generalised Chern-Simons Theory and G₂-Instantons over Associative Fibrations

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Henrique N. Sá Earp
dc.date.accessioned 2019-02-10T10:11:10Z
dc.date.available 2019-02-10T10:11:10Z
dc.date.issued 2014
dc.identifier.citation Generalised Chern-Simons Theory and G₂-Instantons over Associative Fibrations / Henrique N. Sá Earp // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 18 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 53C07; 53C38; 58J28
dc.identifier.other DOI:10.3842/SIGMA.2014.083
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/146620
dc.description.abstract Adjusting conventional Chern-Simons theory to G₂-manifolds, one describes G₂-instantons on bundles over a certain class of 7-dimensional flat tori which fiber non-trivially over T⁴, by a pullback argument. Moreover, if c₂≠0, any (generic) deformation of the G₂-structure away from such a fibred structure causes all instantons to vanish. A brief investigation in the general context of (conformally compatible) associative fibrations f:Y⁷→X⁴ relates G₂-instantons on pullback bundles f∗E→Y and self-dual connections on the bundle E→X over the base, a fact which may be of independent interest. uk_UA
dc.description.sponsorship The author thanks Simon Donaldson for suggesting the matter of this paper, Thomas Walpuski for sharing some unpublished notes and Marcos Jardim for several useful discussions. Special thanks also to the anonymous referees for numerous mathematical and reference contributions. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Generalised Chern-Simons Theory and G₂-Instantons over Associative Fibrations uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис