Наукова електронна бібліотека
періодичних видань НАН України

Double Affine Hecke Algebras of Rank 1 and the Z₃-Symmetric Askey-Wilson Relations

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Ito, T.
dc.contributor.author Terwilliger, P.
dc.date.accessioned 2019-02-09T20:27:33Z
dc.date.available 2019-02-09T20:27:33Z
dc.date.issued 2010
dc.identifier.citation Double Affine Hecke Algebras of Rank 1 and the Z₃-Symmetric Askey-Wilson Relations / T. Ito, P. Terwilliger // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 17 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 33D80; 33D45
dc.identifier.other DOI:10.3842/SIGMA.2010.065
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/146531
dc.description.abstract We consider the double affine Hecke algebra H=H(k₀,k₁,k₀v,k₁v;q) associated with the root system (C₁v,C₁). We display three elements x, y, z in H that satisfy essentially the Z₃-symmetric Askey-Wilson relations. We obtain the relations as follows. We work with an algebra Ĥ that is more general than H, called the universal double affine Hecke algebra of type (C₁v,C₁). An advantage of Ĥ over H is that it is parameter free and has a larger automorphism group. We give a surjective algebra homomorphism Ĥ → H. We define some elements x, y, z in Ĥ that get mapped to their counterparts in H by this homomorphism. We give an action of Artin's braid group B₃ on Ĥ that acts nicely on the elements x, y, z; one generator sends x → y → z → x and another generator interchanges x, y. Using the B₃ action we show that the elements x, y, z in Ĥ satisfy three equations that resemble the Z₃-symmetric Askey-Wilson relations. Applying the homomorphism Ĥ → H we find that the elements x, y, z in H satisfy similar relations. uk_UA
dc.description.sponsorship We thank Alexei Zhedanov for mentioning to us around 2005 that AW(3) has the presentation (1)–(3); this knowledge motivated us to search for a result like Theorem 2.4. We also thank Zhedanov for several illuminating conversations on DAHA during his visit to Kanazawa in December 2007. We thank the two referees for clarifying how the present paper is related to the previous literature. The second author thanks Tom Koornwinder, Alexei Oblomkov, and Xiaoguang Ma for useful recent conversations on the general subject DAHA. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Double Affine Hecke Algebras of Rank 1 and the Z₃-Symmetric Askey-Wilson Relations uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис