Показати простий запис статті

dc.contributor.author Shadchin, S.
dc.date.accessioned 2019-02-09T17:21:09Z
dc.date.available 2019-02-09T17:21:09Z
dc.date.issued 2006
dc.identifier.citation Status Report on the Instanton Counting / S. Shadchin // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 20 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2000 Mathematics Subject Classification: 81T60; 81T13
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/146448
dc.description.abstract The non-perturbative behavior of the N = 2 supersymmetric Yang-Mills theories is both highly non-trivial and tractable. In the last three years the valuable progress was achieved in the instanton counting, the direct evaluation of the low-energy effective Wilsonian action of the theory. The localization technique together with the Lorentz deformation of the action provides an elegant way to reduce functional integrals, representing the effective action, to some finite dimensional contour integrals. These integrals, in their turn, can be converted into some difference equations which define the Seiberg-Witten curves, the main ingredient of another approach to the non-perturbative computations in the N = 2 super Yang-Mills theories. Almost all models with classical gauge groups, allowed by the asymptotic freedom condition can be treated in such a way. In my talk I explain the localization approach to the problem, its relation to the Seiberg-Witten approach and finally I give a review of some interesting results. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Status Report on the Instanton Counting uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис