Показати простий запис статті
dc.contributor.author |
Iorgov, N. |
|
dc.date.accessioned |
2019-02-09T16:48:53Z |
|
dc.date.available |
2019-02-09T16:48:53Z |
|
dc.date.issued |
2006 |
|
dc.identifier.citation |
Eigenvectors of Open Bazhanov-Stroganov Quantum Chain / N. Iorgov // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 17 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2000 Mathematics Subject Classification: 81R12; 81R50 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/146424 |
|
dc.description.abstract |
In this contribution we give an explicit formula for the eigenvectors of Hamiltonians of open Bazhanov-Stroganov quantum chain. The Hamiltonians of this quantum chain is defined by the generation polynomial An(λ) which is upper-left matrix element of monodromy matrix built from the cyclic L-operators. The formulas for the eigenvectors are derived using iterative procedure by Kharchev and Lebedev and given in terms of wp(s)-function which is a root of unity analogue of Γq-function. |
uk_UA |
dc.description.sponsorship |
The author would like to acknowledge the organizers of the Sixth International Conference “Symmetry in Nonlinear Mathematical Physics” (June 20–26, Kyiv) for their nice conference. The present paper is the written version of the talk delivered by the author at this conference. The author is thankful to Professors G. von Gehlen, S. Pakuliak and V. Shadura for collaboration in obtaining the results presented in this contribution. The research presented here is partially supported by INTAS (grant No.03-51-3350) and by the French–Ukrainian project “Dnipro”. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Eigenvectors of Open Bazhanov-Stroganov Quantum Chain |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті