Показати простий запис статті
dc.contributor.author |
Altaisky, M.V. |
|
dc.date.accessioned |
2019-02-07T20:33:33Z |
|
dc.date.available |
2019-02-07T20:33:33Z |
|
dc.date.issued |
2006 |
|
dc.identifier.citation |
Scale-Dependent Functions, Stochastic Quantization and Renormalization / M.V. Altaisky // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 27 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2000 Mathematics Subject Classification: 37E20; 42C40; 81T16; 81T17 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/146180 |
|
dc.description.abstract |
We consider a possibility to unify the methods of regularization, such as the renormalization group method, stochastic quantization etc., by the extension of the standard field theory of the square-integrable functions φ(b) ∊ L²(Rd) to the theory of functions that depend on coordinate b and resolution a. In the simplest case such field theory turns out to be a theory of fields φa(b,·) defined on the affine group G: x′ = ax+b, a > 0, x, b ∊ Rd, which consists of dilations and translation of Euclidean space. The fields φa(b,·) are constructed using the continuous wavelet transform. The parameters of the theory can explicitly depend on the resolution a. The proper choice of the scale dependence g = g(a) makes such theory free of divergences by construction |
uk_UA |
dc.description.sponsorship |
The author is thankful to the referee for useful comments and references. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Scale-Dependent Functions, Stochastic Quantization and Renormalization |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті