Показати простий запис статті
dc.contributor.author |
Shin, K.C. |
|
dc.date.accessioned |
2019-02-07T19:14:13Z |
|
dc.date.available |
2019-02-07T19:14:13Z |
|
dc.date.issued |
2010 |
|
dc.identifier.citation |
Anharmonic Oscillators with Infinitely Many Real Eigenvalues and PT-Symmetry / K.C. Shin // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 13 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 34L20; 34L40 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/146153 |
|
dc.description.abstract |
We study the eigenvalue problem −u''+V(z)u=λu in the complex plane with the boundary condition that u(z) decays to zero as z tends to infinity along the two rays arg z=−π/2± 2π/(m+2), where V(z)=−(iz)m−P(iz) for complex-valued polynomials P of degree at most m−1≥2. We provide an asymptotic formula for eigenvalues and a necessary and sufficient condition for the anharmonic oscillator to have infinitely many real eigenvalues. |
uk_UA |
dc.description.sponsorship |
This paper is a contribution to the Proceedings of the 5-th Microconference “Analytic and Algebraic Methods V”. The full collection is available at http://www.emis.de/journals/SIGMA/Prague2009.html. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Anharmonic Oscillators with Infinitely Many Real Eigenvalues and PT-Symmetry |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті