Показати простий запис статті
dc.contributor.author |
Goswami, D. |
|
dc.date.accessioned |
2019-02-07T14:43:33Z |
|
dc.date.available |
2019-02-07T14:43:33Z |
|
dc.date.issued |
2010 |
|
dc.identifier.citation |
Quantum Isometry Group for Spectral Triples with Real Structure / D. Goswami // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 58B32 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/146117 |
|
dc.description.abstract |
Given a spectral triple of compact type with a real structure in the sense of [Dabrowski L., J. Geom. Phys. 56 (2006), 86-107] (which is a modification of Connes' original definition to accommodate examples coming from quantum group theory) and references therein, we prove that there is always a universal object in the category of compact quantum group acting by orientation preserving isometries (in the sense of [Bhowmick J., Goswami D., J. Funct. Anal. 257 (2009), 2530-2572]) and also preserving the real structure of the spectral triple. This gives a natural definition of quantum isometry group in the context of real spectral triples without fixing a choice of 'volume form' as in [Bhowmick J., Goswami D., J. Funct. Anal. 257 (2009), 2530-2572]. |
uk_UA |
dc.description.sponsorship |
This paper is a contribution to the Special Issue “Noncommutative Spaces and Fields”. The full collection is available at http://www.emis.de/journals/SIGMA/noncommutative.html.
The author acknowledges the support from Indian National Science Academy for the project
‘Noncommutative Geometry and Quantum Groups’ and UKIERI, British Council. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Quantum Isometry Group for Spectral Triples with Real Structure |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті