Наукова електронна бібліотека
періодичних видань НАН України

Finding Liouvillian First Integrals of Rational ODEs of Any Order in Finite Terms

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Kosovtsov, Y.N.
dc.date.accessioned 2019-02-07T13:44:52Z
dc.date.available 2019-02-07T13:44:52Z
dc.date.issued 2006
dc.identifier.citation Finding Liouvillian First Integrals of Rational ODEs of Any Order in Finite Terms / Y.N. Kosovtsov // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 22 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2000 Mathematics Subject Classification: 34A05; 34A34; 34A35
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/146113
dc.description.abstract It is known, due to Mordukhai-Boltovski, Ritt, Prelle, Singer, Christopher and others, that if a given rational ODE has a Liouvillian first integral then the corresponding integrating factor of the ODE must be of a very special form of a product of powers and exponents of irreducible polynomials. These results lead to a partial algorithm for finding Liouvillian first integrals. However, there are two main complications on the way to obtaining polynomials in the integrating factor form. First of all, one has to find an upper bound for the degrees of the polynomials in the product above, an unsolved problem, and then the set of coefficients for each of the polynomials by the computationally-intensive method of undetermined parameters. As a result, this approach was implemented in CAS only for first and relatively simple second order ODEs. We propose an algebraic method for finding polynomials of the integrating factors for rational ODEs of any order, based on examination of the resultants of the polynomials in the numerator and the denominator of the right-hand side of such equation. If both the numerator and the denominator of the right-hand side of such ODE are not constants, the method can determine in finite terms an explicit expression of an integrating factor if the ODE permits integrating factors of the above mentioned form and then the Liouvillian first integral. The tests of this procedure based on the proposed method, implemented in Maple in the case of rational integrating factors, confirm the consistence and efficiency of the method. uk_UA
dc.description.sponsorship I would like to thank the referees for extensive comments and suggestions regarding of earlier versions of this paper and Reece Heineke for a careful reading of the paper. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Finding Liouvillian First Integrals of Rational ODEs of Any Order in Finite Terms uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис