Показати простий запис статті
dc.contributor.author |
Agrotis, M.A. |
|
dc.date.accessioned |
2019-02-07T13:27:51Z |
|
dc.date.available |
2019-02-07T13:27:51Z |
|
dc.date.issued |
2006 |
|
dc.identifier.citation |
Prolongation Loop Algebras for a Solitonic System of Equations / M.A. Agrotis // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 24 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2000 Mathematics Subject Classification: 37K10; 37N20; 35A30; 35Q60; 78A60 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/146106 |
|
dc.description.abstract |
We consider an integrable system of reduced Maxwell-Bloch equations that describes the evolution of an electromagnetic field in a two-level medium that is inhomogeneously broadened. We prove that the relevant Bäcklund transformation preserves the reality of the n-soliton potentials and establish their pole structure with respect to the broadening parameter. The natural phase space of the model is embedded in an infinite dimensional loop algebra. The dynamical equations of the model are associated to an infinite family of higher order Hamiltonian systems that are in involution. We present the Hamiltonian functions and the Poisson brackets between the extended potentials. |
uk_UA |
dc.description.sponsorship |
The author would like to thank P. Shipman for useful discussions and the Cyprus Research Promotion Foundation for support through the grant CRPF0504/03. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Prolongation Loop Algebras for a Solitonic System of Equations |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті