Показати простий запис статті

dc.contributor.author Agrotis, M.A.
dc.date.accessioned 2019-02-07T13:27:51Z
dc.date.available 2019-02-07T13:27:51Z
dc.date.issued 2006
dc.identifier.citation Prolongation Loop Algebras for a Solitonic System of Equations / M.A. Agrotis // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 24 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2000 Mathematics Subject Classification: 37K10; 37N20; 35A30; 35Q60; 78A60
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/146106
dc.description.abstract We consider an integrable system of reduced Maxwell-Bloch equations that describes the evolution of an electromagnetic field in a two-level medium that is inhomogeneously broadened. We prove that the relevant Bäcklund transformation preserves the reality of the n-soliton potentials and establish their pole structure with respect to the broadening parameter. The natural phase space of the model is embedded in an infinite dimensional loop algebra. The dynamical equations of the model are associated to an infinite family of higher order Hamiltonian systems that are in involution. We present the Hamiltonian functions and the Poisson brackets between the extended potentials. uk_UA
dc.description.sponsorship The author would like to thank P. Shipman for useful discussions and the Cyprus Research Promotion Foundation for support through the grant CRPF0504/03. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Prolongation Loop Algebras for a Solitonic System of Equations uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис