Наукова електронна бібліотека
періодичних видань НАН України

Classical Particle in Presence of Magnetic Field, Hyperbolic Lobachevsky and Spherical Riemann Models

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Kudryashov, V.V.
dc.contributor.author Kurochkin, Yu.A.
dc.contributor.author Ovsiyuk, E.M.
dc.contributor.author Red'kov, V.M.
dc.date.accessioned 2019-02-07T12:40:12Z
dc.date.available 2019-02-07T12:40:12Z
dc.date.issued 2010
dc.identifier.citation Classical Particle in Presence of Magnetic Field, Hyperbolic Lobachevsky and Spherical Riemann Models / V.V. Kudryashov, Yu.A. Kurochkin, E.M. Ovsiyuk, V.M. Red'kov // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 19 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 37J35; 70G60; 70H06; 74H05
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/146095
dc.description.abstract Motion of a classical particle in 3-dimensional Lobachevsky and Riemann spaces is studied in the presence of an external magnetic field which is analogous to a constant uniform magnetic field in Euclidean space. In both cases three integrals of motions are constructed and equations of motion are solved exactly in the special cylindrical coordinates on the base of the method of separation of variables. In Lobachevsky space there exist trajectories of two types, finite and infinite in radial variable, in Riemann space all motions are finite and periodical. The invariance of the uniform magnetic field in tensor description and gauge invariance of corresponding 4-potential description is demonstrated explicitly. The role of the symmetry is clarified in classification of all possible solutions, based on the geometric symmetry group, SO(3,1) and SO(4) respectively. uk_UA
dc.description.sponsorship This paper is a contribution to the Proceedings of the Eighth International Conference “Symmetry in Nonlinear Mathematical Physics” (June 21–27, 2009, Kyiv, Ukraine). The full collection is available at http://www.emis.de/journals/SIGMA/symmetry2009.html. Authors are grateful to participants of seminar of Laboratory of Theoretical Physics, National Academy of Sciences of Belarus for moral support and advice, also we are grateful to anonymous reviewers for stimulating discussion and criticism. This work was also supported by the Fund for Basic Researches of Belarus F09K-123. We wish to thank the Organizers of the VIII-th International Conference “Symmetry in Nonlinear Mathematical Physics” (June 21–27, 2009, Kyiv) for having given us the opportunity to talk on this subject as well as for local support. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Classical Particle in Presence of Magnetic Field, Hyperbolic Lobachevsky and Spherical Riemann Models uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис