Показати простий запис статті
dc.contributor.author |
Enriquez, B. |
|
dc.contributor.author |
Gavarini, F. |
|
dc.date.accessioned |
2019-02-07T09:14:45Z |
|
dc.date.available |
2019-02-07T09:14:45Z |
|
dc.date.issued |
2006 |
|
dc.identifier.citation |
A formula for the logarithm of the KZ associator / B. Enriquez, F. Gavarini // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 4 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2000 Mathematics Subject Classification: 17B01; 81R50 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/146087 |
|
dc.description.abstract |
We prove that the logarithm of a group-like element in a free algebra coincides with its image by a certain linear map. We use this result and the formula of Le and Murakami for the Knizhnik-Zamolodchikov (KZ) associator Φ to derive a formula for log(Φ) in terms of MZV's (multiple zeta values). |
uk_UA |
dc.description.sponsorship |
This paper is a contribution to the Vadim Kuznetsov Memorial Issue “Integrable Systems and Related Topics”. We first established the formula for log(Φ) in Corollary 1 by analytic computations (using a direct proof of Lemma 2). It was the referee who remarked its formal similarity with the formula of Le and Murakami (Theorem 1); this remark can be expressed as the equality log(Φ) = cbh d2(Φ). This led us to try and understand whether this formula followed from the group-likeness of Φ, which is indeed the case (Proposition 1). C. Reutenauer then pointed out that a part of our argument is a result in his book. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
A formula for the logarithm of the KZ associator |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті