Показати простий запис статті
dc.contributor.author |
Gutlyanskii, V.Y. |
|
dc.contributor.author |
Nesmelova, O.V. |
|
dc.contributor.author |
Ryazanov, V.I. |
|
dc.date.accessioned |
2018-07-17T17:51:44Z |
|
dc.date.available |
2018-07-17T17:51:44Z |
|
dc.date.issued |
2016 |
|
dc.identifier.citation |
On a model semilinear elliptic equation in the plane / V.Y. Gutlyanskii, O.V. Nesmelova, V.I. Ryazanov // Український математичний вісник. — 2016. — Т. 13, № 1. — С. 91-105. — Бібліогр.: 18 назв. — англ. |
uk_UA |
dc.identifier.issn |
1810-3200 |
|
dc.identifier.other |
2010 MSC: 30C62, 35J61 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/140893 |
|
dc.description.abstract |
Assume that Ω is a regular domain in the complex plane C and A(z) is symmetric 2 × 2 matrix with measurable entries, det A = 1 and such that 1/K|ξ|² ≤ 〈A(z)ξ, ξ〉 ≤ K|ξ|², ξ ∊ R², 1 ≤ K < ∞. We study the blow-up problem for a model semilinear equation div (A(z)∇u) = e^u in Ω and show that the well-known Liouville–Bieberbach function solves the problem under an appropriate choice of the matrix A(z). The proof is based on the fact that every regular solution u can be expressed as u(z) = T(ω(z)) where ω : Ω → G stands for quasiconformal homeomorphism generated by the matrix A(z) and T is a solution of the semilinear weihted Bieberbach equation ∆T = m(w)e^T in G. Here the weight m(w) is the Jacobian determinant of the inverse mapping ω⁻¹(w). |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут прикладної математики і механіки НАН України |
uk_UA |
dc.relation.ispartof |
Український математичний вісник |
|
dc.title |
On a model semilinear elliptic equation in the plane |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті