Показати простий запис статті
dc.contributor.author |
Khruslov, E.Ya. |
|
dc.contributor.author |
Khilkova, L.O. |
|
dc.contributor.author |
Goncharenko, M.V. |
|
dc.date.accessioned |
2018-07-10T19:28:26Z |
|
dc.date.available |
2018-07-10T19:28:26Z |
|
dc.date.issued |
2017 |
|
dc.identifier.citation |
Integral Conditions for Convergence of Solutions of Non-Linear Robin's Problem in Strongly Perforated Domain / E.Ya. Khruslov, L.O. Khilkova, M.V. Goncharenko // Журнал математической физики, анализа, геометрии. — 2017. — Т. 13, № 3. — С. 283-313. — Бібліогр.: 17 назв. — англ. |
uk_UA |
dc.identifier.issn |
1812-9471 |
|
dc.identifier.other |
Mathematics Subject Classification 2000: 35Q70 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/140576 |
|
dc.description.abstract |
We consider a boundary-value problem for the Poisson equation in a strongly perforated domain Ωε = Ω\Fε ⊂ Rⁿ (n ≥ 2) with non-linear Robin's condition on the boundary of the perforating set Fε. The domain Ωε depends on the small parameter ε > 0 such that the set Fε becomes more and more loosened and distributes more densely in the domain Ω as ε→0. We study the asymptotic behavior of the solution uε(x) of the problem as ε→0. A homogenized equation for the main term u(x) of the asymptotics of uε(x) is constructed and the integral conditions for the convergence of uε(x) to u(x) are formulated. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
uk_UA |
dc.relation.ispartof |
Журнал математической физики, анализа, геометрии |
|
dc.title |
Integral Conditions for Convergence of Solutions of Non-Linear Robin's Problem in Strongly Perforated Domain |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті