Показати простий запис статті
dc.contributor.author |
Zlatska, A.V. |
|
dc.contributor.author |
Rodnichenko, A.E. |
|
dc.contributor.author |
Gubar, O.S. |
|
dc.contributor.author |
Zubov, D.O. |
|
dc.contributor.author |
Novikova, S.N. |
|
dc.contributor.author |
Vasyliev, R.G. |
|
dc.date.accessioned |
2018-06-19T09:06:09Z |
|
dc.date.available |
2018-06-19T09:06:09Z |
|
dc.date.issued |
2017 |
|
dc.identifier.citation |
Endometrial stromal cells: isolation, expansion, morphological and functional properties / A.V. Zlatska, A.E. Rodnichenko, О.S. Gubar, D.О. Zubov, S.N. Novikova, R.G. Vasyliev // Experimental Oncology. — 2017 — Т. 39, № 3. — С. 197–202. — Бібліогр.: 12 назв. — англ. |
uk_UA |
dc.identifier.issn |
1812-9269 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/138534 |
|
dc.description.abstract |
Aim: We aimed to study biological properties of human endometrial stromal cells in vitro. Materials and Methods: The endometrium samples (n = 5) were obtained by biopsy at the first phase of the menstrual cycle from women with endometrial hypoplasia. In all cases, a voluntary written informed consent was obtained from the patients. Endometrial fragments were dissociated by enzymatic treatment. The cells were cultured in DMEM/F12 supplemented with 10% FBS, 2 mМ L-glutamine and 1 ng/ml FGF-2 in a multi-gas incubator at 5% CO₂ and 5% O₂. At P3 the cells were subjected to immunophenotyping, multilineage differentiation, karyotype stability and colony forming efficiency. The cell secretome was assessed by BioRad Multiplex immunoassay kit. Results: Primary population of endometrial cells was heterogeneous and contained cells with fibroblast-like and epithelial-like morphology, but at P3 the majority of cell population had fibroblast-like morphology. The cells possessed typical for MSCs phenotype CD90⁺CD105⁺CD73⁺CD34⁻CD45⁻HLA⁻DR⁻. The cells also expressed CD140a, CD140b, CD146, and CD166 antigents; and were negative for CD106, CD184, CD271, and CD325. Cell doubling time was 29.6 ± 1.3 h. The cells were capable of directed osteogenic, adipogenic and chondrogenic differentiation. The cells showed 35.7% colony forming efficiency and a tendency to 3D spheroid formation. The GTG-banding assay confirmed the stability of eMSC karyotype during long-term culturing (up to P8). After 48 h incubation period in serum-free medium eMSC secreted anti-inflammatory IL-1ra, as well as IL-6, IL-8 and IFNγ, angiogenic factors VEGF, GM-CSF and FGF-2, chemokines IP-10 and MCP-1. Conclusion: Thus, cultured endometrial stromal cells meet minimal ISCT criteria for MSC. Proliferative potential, karyotype stability, multilineage plasticity and secretome profile make eMSC an attractive object for the regenerative medicine use. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут експериментальної патології, онкології і радіобіології ім. Р.Є. Кавецького НАН України |
uk_UA |
dc.relation.ispartof |
Experimental Oncology |
|
dc.subject |
Original contributions |
uk_UA |
dc.title |
Endometrial stromal cells: isolation, expansion, morphological and functional properties |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті