Показати простий запис статті
dc.contributor.author |
Rychły, J. |
|
dc.contributor.author |
Gruszecki, P. |
|
dc.contributor.author |
Mruczkiewicz, M. |
|
dc.contributor.author |
Kłos, J.W. |
|
dc.contributor.author |
Mamica, S. |
|
dc.contributor.author |
Krawczyk, M. |
|
dc.date.accessioned |
2018-01-05T17:39:42Z |
|
dc.date.available |
2018-01-05T17:39:42Z |
|
dc.date.issued |
2015 |
|
dc.identifier.citation |
Magnonic crystals — prospective structures for shaping spin waves in nanoscale / J. Rychły, P. Gruszecki, M. Mruczkiewicz, J.W. Kłos, S. Mamica, M. Krawczyk // Физика низких температур. — 2015. — Т. 41, № 10. — С. 959–975. — Бібліогр.: 65 назв. — англ. |
uk_UA |
dc.identifier.issn |
0132-6414 |
|
dc.identifier.other |
PACS: 75.30.Ds, 75.70.Cn, 75.75.–c |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/128078 |
|
dc.description.abstract |
We have investigated theoretically band structure of spin waves in magnonic crystals with periodicity in one(1D),
two- (2D) and three-dimensions (3D). We have solved Landau–Lifshitz equation with the use of plane
wave method, finite element method in frequency domain and micromagnetic simulations in time domain to find
the dynamics of spin waves and spectrum of their eigenmodes. The spin wave spectra were calculated in linear
approximation. In this paper we show usefulness of these methods in calculations of various types of spin waves.
We demonstrate the surface character of the Damon–Eshbach spin wave in 1D magnonic crystals and change of
its surface localization with the band number and wavenumber in the first Brillouin zone. The surface property
of the spin wave excitation is further exploited by covering plate of the magnonic crystal with conductor. The
band structure in 2D magnonic crystals is complex due to additional spatial inhomogeneity introduced by the
demagnetizing field. This modifies spin wave dispersion, makes the band structure of magnonic crystals strongly
dependent on shape of the inclusions and type of the lattice. The inhomogeneity of the internal magnetic field
becomes unimportant for magnonic crystals with small lattice constant, where exchange interactions dominate.
For 3D magnonic crystals, characterized by small lattice constant, wide magnonic band gap is found. We show
that the spatial distribution of different materials in magnonic crystals can be explored for tailored effective
damping of spin waves |
uk_UA |
dc.description.sponsorship |
The research leading to these results has received funding
from Polish National Science Centre project DEC-2-
12/07/E/ST3/00538 and from the EUs Horizon2020 research
and innovation programme under the Marie Sklodowska-Curie
GA No644348. The numerical calculation
were performed at Poznan Supercomputing and Networking
Center (grant No. 209). |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
uk_UA |
dc.relation.ispartof |
Физика низких температур |
|
dc.subject |
Специальный выпуск К 80-летию уравнения Ландау–Лифшица |
uk_UA |
dc.title |
Magnonic crystals — prospective structures for shaping spin waves in nanoscale |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті