Наукова електронна бібліотека
періодичних видань НАН України

Charge states of strongly correlated 3d oxides: from typical insulator to unconventional electron-hole Bose liquid

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Moskvin, A.S.
dc.date.accessioned 2017-12-27T14:47:32Z
dc.date.available 2017-12-27T14:47:32Z
dc.date.issued 2007
dc.identifier.citation Charge states of strongly correlated 3d oxides: from typical insulator to unconventional electron-hole Bose liquid / A.S. Moskvin // Физика низких температур. — 2007. — Т. 33, № 2-3. — С. 314-327. — Бібліогр.: 34 назв. — англ. uk_UA
dc.identifier.issn 0132-6414
dc.identifier.other PACS: 71.10.–w, 71.28.+d, 71.30.+h, 74.72.–h
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/127739
dc.description.abstract We present a model approach to describe charge fluctuations and different charge phases in strongly correlated 3d oxides. As a generic model system one considers that of centers each with three possible valence states M⁰, described in frames of S 1 pseudospin (isospin) formalism by an effective anisotropic non-Heisenberg Hamiltonian which includes both two types of single particle correlated hopping and the two-particle hopping. Simple uniform mean-field phases include an insulating monovalent M⁰ phase, mixed-valence binary (disproportionated) M phase, and mixed-valence ternary («under-disproportionated») M⁰, phase. We consider two first phases in more details focusing on the problem of electron-hole states and different types of excitons in M⁰ phase and formation of electron-hole Bose liquid in M phase. Pseudospin formalism provides a useful framework for revealing and describing different topological charge fluctuations, in particular, like domain walls or bubble domains in antiferromagnets. Electron-lattice polarization effects are shown to be crucial for the stabilization of either phase. All the insulating systems such as M0 phase are subdivided to two classes: stable and unstable ones with regard to the formation of self-trapped charge transfer (CT) excitons. The latter systems appear to be unstable with regard to the formation of CT exciton clusters, or droplets of the electron-hole Bose liquid. The model approach suggested is believed to be applied to describe a physics of strongly correlated oxides such as cuprates, manganites, bismuthates, and other systems with charge transfer excitonic instability and/or mixed valence. We shortly discuss an unconventional scenario of the essential physics of cuprates which implies their instability with regard to the self-trapping of charge transfer excitons and the formation of electron-hole Bose liquid. uk_UA
dc.description.sponsorship Author acknowledges the stimulating discussions with V. Vikhnin, A.V. Mitin, S.-L. Drechsler, T. Mishonov, R. Hayn, I. Eremin, M. Eremin, Yu. Panov, V.L. Kozhevnikov and partial support by CRDF Grant No. REC-005, RFBR grants Nos. 04-02-96077, 06-02-17242, and 06-03-90893. uk_UA
dc.language.iso en uk_UA
dc.publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України uk_UA
dc.relation.ispartof Физика низких температур
dc.subject Новые электронные материалы и системы uk_UA
dc.title Charge states of strongly correlated 3d oxides: from typical insulator to unconventional electron-hole Bose liquid uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис