Показати простий запис статті
dc.contributor.author |
Moskvin, A.S. |
|
dc.date.accessioned |
2017-12-27T14:47:32Z |
|
dc.date.available |
2017-12-27T14:47:32Z |
|
dc.date.issued |
2007 |
|
dc.identifier.citation |
Charge states of strongly correlated 3d oxides: from typical
insulator to unconventional electron-hole Bose liquid / A.S. Moskvin // Физика низких температур. — 2007. — Т. 33, № 2-3. — С. 314-327. — Бібліогр.: 34 назв. — англ. |
uk_UA |
dc.identifier.issn |
0132-6414 |
|
dc.identifier.other |
PACS: 71.10.–w, 71.28.+d, 71.30.+h, 74.72.–h |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/127739 |
|
dc.description.abstract |
We present a model approach to describe charge fluctuations and different charge phases in
strongly correlated 3d oxides. As a generic model system one considers that of centers each with
three possible valence states M⁰, described in frames of S 1 pseudospin (isospin) formalism by
an effective anisotropic non-Heisenberg Hamiltonian which includes both two types of single particle
correlated hopping and the two-particle hopping. Simple uniform mean-field phases include
an insulating monovalent M⁰ phase, mixed-valence binary (disproportionated) M phase, and
mixed-valence ternary («under-disproportionated») M⁰, phase. We consider two first phases in
more details focusing on the problem of electron-hole states and different types of excitons in
M⁰ phase and formation of electron-hole Bose liquid in M phase. Pseudospin formalism provides
a useful framework for revealing and describing different topological charge fluctuations, in particular,
like domain walls or bubble domains in antiferromagnets. Electron-lattice polarization effects
are shown to be crucial for the stabilization of either phase. All the insulating systems such as
M0 phase are subdivided to two classes: stable and unstable ones with regard to the formation of
self-trapped charge transfer (CT) excitons. The latter systems appear to be unstable with regard to
the formation of CT exciton clusters, or droplets of the electron-hole Bose liquid. The model approach
suggested is believed to be applied to describe a physics of strongly correlated oxides such
as cuprates, manganites, bismuthates, and other systems with charge transfer excitonic instability
and/or mixed valence. We shortly discuss an unconventional scenario of the essential physics of
cuprates which implies their instability with regard to the self-trapping of charge transfer excitons
and the formation of electron-hole Bose liquid. |
uk_UA |
dc.description.sponsorship |
Author acknowledges the stimulating discussions
with V. Vikhnin, A.V. Mitin, S.-L. Drechsler, T.
Mishonov, R. Hayn, I. Eremin, M. Eremin, Yu.
Panov, V.L. Kozhevnikov and partial support by
CRDF Grant No. REC-005, RFBR grants Nos.
04-02-96077, 06-02-17242, and 06-03-90893. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
uk_UA |
dc.relation.ispartof |
Физика низких температур |
|
dc.subject |
Новые электронные материалы и системы |
uk_UA |
dc.title |
Charge states of strongly correlated 3d oxides: from typical insulator to unconventional electron-hole Bose liquid |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті