Наукова електронна бібліотека
періодичних видань НАН України

Thermal stability of ultrahard polycrystalline diamond composite materials

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Meng, D.
dc.contributor.author Yue, W.
dc.contributor.author Lin, F.
dc.contributor.author Wang, C.
dc.contributor.author Wu, Z.
dc.date.accessioned 2017-11-16T17:41:02Z
dc.date.available 2017-11-16T17:41:02Z
dc.date.issued 2015
dc.identifier.citation Thermal stability of ultrahard polycrystalline diamond composite materials / D. Meng, W. Yue, F. Lin, C. Wang, Z. Wu // Сверхтвердые материалы. — 2015. — № 2. — С. 3-10. — Бібліогр.: 15 назв. — англ. uk_UA
dc.identifier.issn 0203-3119
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/126156
dc.description.abstract Thermal stability of the ultrahard polycrystalline diamond (UHPCD) composite material developed by the reinforcement of the polycrystalline diamond (PCD) with chemical vapor deposition (CVD) diamond has been investigated in a flow of argon at 1200 °C. The indentation, Raman spectra and wear test have been performed to compare hardness, C–C structure and wear resistance of untreated and thermal treated UHPCD. It has been shown that the hardness of CVD diamond in UHPCD attains 133±7 GPa after high pressure and high temperature, while after thermal treatment the hardness decreases to 109±3 GPa, and the wear resistance of the thermal treated UHPCD decreases from 0.17 to 0.6 mg/km. The narrowing of full width at half maximum and shift of Raman peak to lower frequencies of CVD diamond in thermal treated UHPCD imply a decrease of crystal structural defects and compressive stresses, which results in a drop of the hardness of CVD diamond in a thermal treated UHPCD. The higher wear rate of thermal treated UHPCD is due to the lower hardness. uk_UA
dc.description.abstract Досліджено термічну стабільність надтвердого полікристалічного алмазного (UHPCD) композиційного матеріалу, отриманого армуванням полікристалічного алмазу після хімічного осадження (CVD) алмазу в потоці аргону при 1200 °C. Для порівняння твердості, C–C-структури і зносостійкості необробленого та термообробленого UHPCD було досліджено заглиблення індентора, спектри комбінаційного розсіювання та знос. Показано, що твердість CVD-алмазу в UHPCD досягає 133±7 ГПа після дії високого тиску і високої температури, а після термообробки зменшується до 109±3 ГПа, зносостійкість UHPCD після термообробки зменшується від 0,17 до 0,6 мг/км. Звуження напівширини і зсув піку комбінаційного розсіювання в область низьких частот CVD-алмазу в термообробленому UHPCD характеризує зменшення кристалічних структурних дефектів і напружень стиску, що призводить до зниження твердості CVD-алмазу в термообробленому UHPCD. Вища швидкість зносу термообробленого UHPCD пов’язана з більш низькою твердістю. uk_UA
dc.description.abstract Исследована термическая стабильность сверхтвердого поликристаллического алмазного (UHPCD) композиционного материала, полученного армированием поликристаллического алмаза после химического осаждения (CVD) алмаза в потоке аргона при 1200 °C. Для сравнения твердости, C–C-структуры и износостойкости необработанного и термообработанного UHPCD были исследованы глубина проникновения индентора, спектры комбинационного рассеяния и износ. Показано, что твердость CVD-алмаза в UHPCD достигает 133±7 ГПа после действия высокого давления и высокой температуры, а после термической обработки уменьшается до 109±3 ГПа, износостойкость после термической обработки UHPCD уменьшается от 0,17 до 0,6 мг/км. Сужение полуширины и сдвиг пика комбинационного рассеяния в область низких частот CVD- алмаза в термообработанном UHPCD характеризует уменьшение кристаллических структурных дефектов и напряжений сжатия, что приводит к снижению твердости CVD-алмаза в термообработанном UHPCD. Более высокая скорость износа термически обработанного UHPCD связана с более низкой твердостью. uk_UA
dc.description.sponsorship The authors thank the National Natural Science Foundation of China (51375466) and the International Science and Technology Cooperation Project of China (2011DFR50060). We are also grateful to Prof. Alexandr Shulzhenko, Dr. Alexandr Sokolov and Vladislav Gargin from the Department of Synthesis and Sintering of Superhard Materials, Bakul Institute for Superhard Materials, National Academy of Sciences of Ukraine, for their help in synthesis and characterization experiments. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут надтвердих матеріалів ім. В.М. Бакуля НАН України uk_UA
dc.relation.ispartof Сверхтвердые материалы
dc.subject Получение, структура, свойства uk_UA
dc.title Thermal stability of ultrahard polycrystalline diamond composite materials uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA
dc.identifier.udc 621.921.34-419:539.533


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис