Наукова електронна бібліотека
періодичних видань НАН України

Метод згладженої автокореляційної функції для прогнозування варіації гетероскедастичних часових рядів

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Зражевська, Н.Г.
dc.date.accessioned 2017-09-06T11:43:13Z
dc.date.available 2017-09-06T11:43:13Z
dc.date.issued 2015
dc.identifier.citation Метод згладженої автокореляційної функції для прогнозування варіації гетероскедастичних часових рядів / Н.Г. Зражевська // Системні дослідження та інформаційні технології. — 2015. — № 3. — С. 97-108. — Бібліогр.: 12 назв. — укр. uk_UA
dc.identifier.issn 1681–6048
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/123492
dc.description.abstract Запропоновано новий метод для побудови прогнозу варіації сильноволатильних гетероскедастичних часових рядів. За модель часового ряду взято авторегресію нескінченного порядку. Параметри моделі знайдено як розв’язок системи рівнянь Тьопліца, у якій використовуються модельні коефіцієнти автокореляції, за запропонованим методом. Модель автокореляційної функції на кожному кроці прогнозування побудовано шляхом розв’язання оптимізаційної задачі, що враховує умову сильної залежності. Метод протестовано на штучно згенерованому та реальному часових рядах. Для порівняння результатів прогнозування обрано модель авторегресії, параметри якої знайдено за методом максимальної правдоподібності. Результати свідчать про достатньо високу ефективність запропонованого методу під час прогнозування сильноволатильних гетероскедастичних часових рядів. uk_UA
dc.description.abstract Предложен новый метод для построения прогноза вариации сильноволотильных гетероскедастических временных рядов. В качестве модели временного ряда рассмотрена модель авторегрессии бесконечного порядка. Параметры модели найдены как решение системы уравнений Тёплица, в которой используются модельные коэффициенты автокорреляции. По предложенному методу модель автокорреляционной функции на каждом шаге прогнозирования построена путем решения оптимизационной задачи, учитывающей условие сильной зависимости. Метод проверен на искусственно сгенерированном и реальном временных рядах. Для сравнения результатов прогнозирования выбрана модель авторегрессии, параметры которой найдены методом максимального правдоподобия. Результаты свидетельствуют о достаточно высокой эффективности предложенного метода для прогнозирования сильноволатильных гетероскедастических временных рядов. uk_UA
dc.description.abstract The paper proposes a new method for forecasting the variability for strong volatile heteroscedastic time series. An autoregressive model of an infinite order is considered as a model of time series. Parameters of the model are found as a solution of a Toeplitz system that uses correlation coefficients. The model of the autocorrelation function at every forecasting step is constructed by solving an optimization problem that takes into account the condition of strong dependence. The method has been tested on artificially generated and real time series. The autoregressive model parameters found with the method of maximum likelihood were used to compare the results of a selected autoregressive model. The results show a substantially high effectiveness of the proposed method in predicting of strong volatile heteroscedastic time series. uk_UA
dc.language.iso uk uk_UA
dc.publisher Навчально-науковий комплекс "Інститут прикладного системного аналізу" НТУУ "КПІ" МОН та НАН України uk_UA
dc.relation.ispartof Системні дослідження та інформаційні технології
dc.subject Математичні методи, моделі, проблеми і технології дослідження складних систем uk_UA
dc.title Метод згладженої автокореляційної функції для прогнозування варіації гетероскедастичних часових рядів uk_UA
dc.title.alternative Метод сглаженой автокорреляционной функции для прогнозирования вариации гетероскедастических временных рядов uk_UA
dc.title.alternative The smoothed autocorrelation function method for predicting the variation of heteroscedastic time series uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA
dc.identifier.udc 519.6:519.81


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис